Lecture 25
Built-In Self-Testing
Pattern Generation and Response Compaction

- Motivation and economics
- Definitions
- Built-in self-testing (BIST) process
- BIST pattern generation (PG)
- BIST response compaction (RC)
- Example
- Summary
BIST Motivation

- Useful for field test and diagnosis (less expensive than a local automatic test equipment)

- **Software tests for field test and diagnosis:**
 - Low hardware fault coverage
 - Low diagnostic resolution
 - Slow to operate

- **Hardware BIST benefits:**
 - Lower system test effort
 - Improved system maintenance and repair
 - Improved component repair
 - Better diagnosis
Typical Quality Requirements

- 98% single stuck-at fault coverage
- 100% interconnect fault coverage
- Reject ratio – 1 in 100,000
Benefits and Costs of BIST with DFT

<table>
<thead>
<tr>
<th>Level</th>
<th>Design and test</th>
<th>Fabrication</th>
<th>Manuf. Test</th>
<th>Maintenance Test</th>
<th>Diagnosis and repair</th>
<th>Service interruption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chips</td>
<td>+ / -</td>
<td>+</td>
<td></td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boards</td>
<td>+ / -</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>System</td>
<td>+ / -</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

+ Cost increase
- Cost saving
+/- Cost increase may balance cost reduction
Economics – BIST Costs

- Chip area overhead for:
 - Test controller
 - Hardware pattern generator
 - Hardware response compacter
 - Testing of BIST hardware
- Pin overhead -- At least 1 pin needed to activate BIST operation
- Performance overhead – extra path delays due to BIST
- Yield loss – due to increased chip area or more chips in system because of BIST
- Reliability reduction – due to increased area
- Increased BIST hardware complexity – happens when BIST hardware is made testable
BIST Benefits

- Faults tested:
 - Single combinational / sequential stuck-at faults
 - Delay faults
 - Single stuck-at faults in BIST hardware

- BIST benefits
 - Reduced testing and maintenance cost
 - Lower test generation cost
 - Reduced storage / maintenance of test patterns
 - Simpler and less expensive ATE
 - Can test many units in parallel
 - Shorter test application times
 - Can test at functional system speed
Definitions

- **BILBO** – *Built-in logic block observer*, extra hardware added to flip-flops so they can be reconfigured as an LFSR pattern generator or response compacter, a scan chain, or as flip-flops.
- **Concurrent testing** – Testing process that detects faults during normal system operation.
- **CUT** – *Circuit-under-test*.
- **Exhaustive testing** – Apply all possible 2^n patterns to a circuit with n inputs.
- **Irreducible polynomial** – Boolean polynomial that cannot be factored.
- **LFSR** – *Linear feedback shift register*, hardware that generates pseudo-random pattern sequence.
More Definitions

- **Primitive polynomial** – Boolean polynomial $p(x)$ that can be used to compute increasing powers n of x^n modulo $p(x)$ to obtain all possible non-zero polynomials of degree less than $p(x)$

- **Pseudo-exhaustive testing** – Break circuit into small, overlapping blocks and test each exhaustively

- **Pseudo-random testing** – Algorithmic pattern generator that produces a subset of all possible tests with most of the properties of randomly-generated patterns

- **Signature** – Any statistical circuit property distinguishing between bad and good circuits

- **TPG** – Hardware test pattern generator
BIST Categories:

On-line BIST:
Testing occurs during normal functional operation

Off-line BIST:
Testing occurs while the system is not carrying out its normal functions

Functional
- Concurrent
- Non-Concurrent

Structural

Concurrent

Non-Concurrent
BIST Categories (cont):

Concurrent On-line BIST:
Testing occurs simultaneously with normal functional operation

Non-Concurrent On-line BIST:
Testing is carried out while a system is in an idle state.
BIST Categories (cont):

Functional off-line BIST:
Execute a test based on the functional description of the circuit under test, often employs a functional or high-level fault model.

Structural Off-line BIST:
Execute a test based on the structure of the circuit under test.
Basic Architecture of BIST:

- TPG (Test pattern generator)
- CUT (Circuit Under Test)
- ORA (Output response analyzer)
BIST Process

- **Test controller** – Hardware that activates self-test simultaneously on all PCBs
- Each board controller activates parallel chip BIST Diagnosis effective only if very high fault coverage
BIST Architecture:

Note: BIST cannot test wires and transistors,
- From PI pins to Input MUX
- From POs to output pins
BILBO – Works as Both a PG and a RC

- Built-in Logic Block Observer (BILBO) -- 4 modes:
 1. Flip-flop
 2. LFSR pattern generator
 3. LFSR response compacter
 4. Scan chain for flip-flops
Complex BIST Architecture

- **Testing epoch I:**
 - LFSR1 generates tests for CUT1 and CUT2
 - BILBO2 (LFSR3) compacts CUT1 (CUT2)
- **Testing epoch II:**
 - BILBO2 generates test patterns for CUT3
 - LFSR3 compacts CUT3 response
Bus-Based BIST Architecture

- **Self-test control** broadcasts patterns to each CUT over bus – parallel pattern generation
- Awaits bus transactions showing CUT’s responses to the patterns: serialized compaction
Pattern Generation

- Store in ROM – too expensive
- Exhaustive
- Pseudo-exhaustive
- Pseudo-random (LFSR) – Preferred method
- Binary counters – use more hardware than LFSR
- Modified counters
- Test pattern augmentation
 - LFSR combined with a few patterns in ROM
 - Hardware diffracter – generates pattern cluster in neighborhood of pattern stored in ROM
Exhaustive Pattern Generation

- Shows that every state and transition works
- For n-input circuits, requires all 2^n vectors
- Impractical for $n > 20$
Pseudo-Exhaustive Method

- Partition large circuit into \textit{fanin cones}
 - Backtrace from each PO to PIs influencing it
 - Test fanin cones in parallel

![Diagram showing fanin cones]

- Reduced \# of tests from $2^8 = 256$ to $2^5 \times 2 = 64$
 - Incomplete fault coverage
Pseudo-Exhaustive Pattern Generation

Diagram:
- Five-Bit Binary Counter 1
- 0 for Counter 1
- 1 for Counter 2
- 2-Bit 2-1 MUX
- X1, X2, X3, X4, X5, X6, X7, X8
- Gates 2, 3, 4, 5, 6, 7, 1
- h, f
Random Pattern Testing

Bottom:
Random-Pattern Resistant circuit

(a) Top curve -- random pattern testing with acceptable fault coverage.
(b) Bottom curve -- unacceptable random pattern testing.
Pseudo-Random Pattern Generation

- **Standard Linear Feedback Shift Register (LFSR)**
 - Produces patterns algorithmically – repeatable
 - Has most of desirable random # properties
- Need not cover all 2^n input combinations
- Long sequences needed for good fault coverage
Matrix Equation for Standard LFSR

$$\begin{bmatrix}
X_0 (t + 1) \\
X_1 (t + 1) \\
\vdots \\
X_{n-3} (t + 1) \\
X_{n-2} (t + 1) \\
X_{n-1} (t + 1)
\end{bmatrix} =
\begin{bmatrix}
0 & 1 & 0 & \cdots & 0 & 0 \\
0 & 0 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 1 & 0 \\
0 & 0 & 0 & \cdots & 0 & 1 \\
1 & h_1 & h_2 & \cdots & h_{n-2} & h_{n-1}
\end{bmatrix}
\begin{bmatrix}
X_0 (t) \\
X_1 (t) \\
\vdots \\
X_{n-3} (t) \\
X_{n-2} (t) \\
X_{n-1} (t)
\end{bmatrix}$$

$$X (t + 1) = T_s X (t) \quad (T_s \text{ is companion matrix})$$
LFSR Implements a Galois Field

- **Galois field** (mathematical system):
 - Multiplication by x same as right shift of LFSR
 - Addition operator is XOR (\oplus)
- T_s companion matrix:
 - 1st column 0, except nth element which is always 1 (X_0 always feeds X_{n-1})
 - Rest of row n – feedback coefficients h_i
 - Rest is identity matrix I – means a right shift
- Near-exhaustive (maximal length) LFSR
 - Cycles through $2^n - 1$ states (excluding all-0)
 - 1 pattern of n 1’s, one of $n-1$ consecutive 0’s
Standard n-Stage LFSR Implementation

- Autocorrelation – any shifted sequence same as original in $2^{n-1} - 1$ bits, differs in 2^{n-1} bits
- If $h_j = 0$, that XOR gate is deleted
LFSR Theory

- Cannot initialize to all 0’s – hangs
- If \(X \) is initial state, progresses through states \(X, T_s X, T_s^2 X, T_s^3 X, \ldots \)

Matrix period:

Smallest \(k \) such that \(T_s^k = I \)

- \(k \equiv \) LFSR cycle length

Described by characteristic polynomial:

\[
f(x) = |T_s - I X| = 1 + h_1 x + h_2 x^2 + \ldots + h_{n-1} x^{n-1} + x^n
\]
LFSR Fault Coverage Projection

- Fault detection probability by a random number $p(x) \, dx = \text{fraction of detectable faults with detection probability between } x \text{ and } x + \, dx$
 - $p(x) \, dx \geq 0 \text{ when } 0 \leq x \leq 1$
 - $\int_{0}^{1} p(x) \, dx = 1$
- Exist $p(x) \, dx$ faults with detection probability x
- Mean coverage of those faults is $x \cdot p(x) \, dx$
- Mean fault coverage y_n of 1st n vectors:
 \[I(n) = 1 - \int_{0}^{1} (1 - x)^n p(x) \, dx \]
 \[y_n \equiv 1 - I(n) + \frac{n}{\text{total faults}} \quad (15.6) \]
LFSR Fault Coverage & Vector Length Estimation

- **Random-fault-detection (RFD) variable:**
 - Vector # at which fault first detected
 - $w_i \equiv \# \text{ faults with RFD variable } i$

- So $p(x) = \frac{1}{n_S} \sum_{i=1}^{N} w_i p_i(x)$

- $n_S \equiv \text{size of sample simulated}; \; N \equiv \# \text{ test vectors}$

- $w_0 \approx n_S - \sum_{i=1}^{N} w_i$

- **Method:**
 - Estimate random first detect variables w_i from fault simulator using fault sampling
 - Estimate $I(n)$ using book Equation 15.8
 - Obtain test length by inverting Equation 15.6 & solving numerically
Example External XOR LFSR

Characteristic polynomial \(f(x) = 1 + x + x^3 \)
(read taps from right to left)
External XOR LFSR

- Pattern sequence for example LFSR (earlier):

 \[
 \begin{array}{c|cccccccccc}
 X_0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 0 \\
 X_1 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \\
 X_2 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & \ldots
 \end{array}
 \]

- Always have 1 and \(x^n \) terms in polynomial
- Never repeat an LFSR pattern more than 1 time – Repeats same error vector, cancels fault effect

\[
\begin{bmatrix}
X_0 (t + 1) \\
X_1 (t + 1) \\
X_2 (t + 1)
\end{bmatrix} =
\begin{bmatrix}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 1 & 0
\end{bmatrix}
\begin{bmatrix}
X_0 (t) \\
X_1 (t) \\
X_2 (t)
\end{bmatrix}
\]
Generic Modular LFSR

\[DFF \quad h_1 \quad DFF \quad h_2 \quad DFF \quad h_{n-2} \quad DFF \quad h_{n-1} \]

\[X_0 \quad X_1 \quad X_{n-2} \quad X_{n-1} \]

\[D \quad Q \]

\[x \quad x \quad x \quad x \]

\[1 \quad x \quad n-2 \quad n-1 \]

\[CLOCK \]
Modular Internal XOR LFSR

- Described by companion matrix $T_m = T_s^T$
- Internal XOR LFSR – XOR gates in between D flip-flops
- Equivalent to standard External XOR LFSR
 - With a different state assignment
 - Faster – usually does not matter
 - Same amount of hardware
- $X(t + 1) = T_m \times X(t)$
- $f(x) = \left| T_m - I \times X \right|
 = 1 + h_1 x + h_2 x^2 + \ldots + h_{n-1} x^{n-1} + x^n$
- Right shift – equivalent to multiplying by x, and then dividing by characteristic polynomial and storing the remainder
Modular LFSR Matrix

The Modular LFSR Matrix can be represented as:

\[
\begin{bmatrix}
X_0(t+1) \\
X_1(t+1) \\
X_2(t+1) \\
\vdots \\
X_{n-3}(t+1) \\
X_{n-2}(t+1) \\
X_{n-1}(t+1)
\end{bmatrix} =
\begin{bmatrix}
0 & 0 & 0 & \ldots & 0 & 0 & 1 \\
1 & 0 & 0 & \ldots & 0 & 0 & h_1 \\
0 & 1 & 0 & \ldots & 0 & 0 & h_2 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & 0 & 0 & h_{n-3} \\
0 & 0 & 0 & \ldots & 1 & 0 & h_{n-2} \\
0 & 0 & 0 & \ldots & 0 & 1 & h_{n-1}
\end{bmatrix}
\begin{bmatrix}
X_0(t) \\
X_1(t) \\
X_2(t) \\
\vdots \\
X_{n-3}(t) \\
X_{n-2}(t) \\
X_{n-1}(t)
\end{bmatrix}
\]
Example Modular LFSR

- $f(x) = 1 + x^2 + x^7 + x^8$
- Read LFSR tap coefficients from left to right
Primitive Polynomials

- Want LFSR to generate all possible $2^n - 1$ patterns (except the all-0 pattern)
- Conditions for this – must have a *primitive polynomial*:
 - *Monic* – coefficient of x^n term must be 1
 - *Modular LFSR* – all D FF’s must right shift through XOR’s from X_0 through X_1, ..., through X_{n-1}, which must feed back directly to X_0
 - *Standard LFSR* – all D FF’s must right shift directly from X_{n-1} through X_{n-2}, ..., through X_0, which must feed back into X_{n-1} through XORing feedback network
Primitive Polynomials (continued)

- Characteristic polynomial must divide the polynomial $1 + x^k$ for $k = 2^n - 1$, but not for any smaller k value.
- See Appendix B of book for tables of primitive polynomials.
- If $p(error) = 0.5$, no difference between behavior of primitive & non-primitive polynomial.
- But $p(error)$ is rarely $= 0.5$. In that case, non-primitive polynomial LFSR takes much longer to stabilize with random properties than primitive polynomial LFSR.
Weighted Pseudo-Random Pattern Generation

- If $p(1)$ at all PIs is 0.5, $p_F(1) = 0.5^8 = \frac{1}{256}$

$$p_F(0) = 1 - \frac{1}{256} = \frac{255}{256}$$

- Will need enormous # of random patterns to test a stuck-at 0 fault on F -- LFSR $p(1) = 0.5$
 - We must not use an ordinary LFSR to test this

- IBM – holds patents on weighted pseudo-random pattern generator in ATE
Weighted Pseudo-Random Pattern Generator

- LFSR $\rho(1) = 0.5$
- Solution: Add programmable weight selection and complement LFSR bits to get $\rho(1)$'s other than 0.5
- Need 2-3 weight sets for a typical circuit
- Weighted pattern generator drastically shortens pattern length for pseudo-random patterns
Weighted Pattern Gen.

The diagram shows a weighted pattern generator with two weighted patterns, w_1 and w_2, and an inversion (Inv.) component. The output p (output) is calculated based on these inputs. The table below lists the combinations of w_1 and w_2 along with their corresponding inversions and output values:

<table>
<thead>
<tr>
<th>w_1</th>
<th>w_2</th>
<th>Inv.</th>
<th>p (output)</th>
<th>w_1</th>
<th>w_2</th>
<th>Inv.</th>
<th>p (output)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>$\frac{1}{2}$</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>$\frac{1}{8}$</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>$\frac{1}{2}$</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>$\frac{7}{8}$</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>$\frac{1}{4}$</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>$\frac{1}{16}$</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>$\frac{3}{4}$</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>$\frac{15}{16}$</td>
</tr>
</tbody>
</table>
Cellular Automata (CA)

- Superior to LFSR – even “more” random
 - No shift-induced bit value correlation
 - Can make LFSR more random with linear phase shifter

- Regular connections – each cell only connects to local neighbors

<table>
<thead>
<tr>
<th>$x_{c-1}(t)$</th>
<th>$x_c(t)$</th>
<th>$x_{c+1}(t)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>111</td>
<td>110</td>
<td>101</td>
</tr>
</tbody>
</table>

Gives CA cell connections

$2^6 + 2^4 + 2^3 + 2^1 = 90$ Called Rule 90

$\begin{align*}
x_c(t+1) &= x_{c-1}(t) \oplus x_{c+1}(t)
\end{align*}$
Cellular Automaton

- Five-stage hybrid cellular automaton
- Rule 150: \(x_c(t+1) = x_{c-1}(t) \oplus x_c(t) \oplus x_{c+1}(t) \)
- Alternate Rule 90 and Rule 150 CA

<table>
<thead>
<tr>
<th>(x_{c-1}(t))</th>
<th>(x_c(t))</th>
<th>(x_{c+1}(t))</th>
</tr>
</thead>
<tbody>
<tr>
<td>111</td>
<td>110</td>
<td>101</td>
</tr>
</tbody>
</table>

\[\begin{align*}
 x_c(t+1) & = 1 \\
 111 & \times 1 \\
 110 & \times 0 \\
 101 & \times 0 \\
 100 & \times 1 \\
 011 & \times 0 \\
 010 & \times 1 \\
 001 & \times 1 \\
 000 & \times 0 \\
\end{align*} \]

\[2^7 + 2^4 + 2^2 + 2^1 = 128 + 16 + 8 + 2 = 150 \]
Test Pattern Augmentation

- Secondary ROM – to get LFSR to 100% SAF coverage
 - Add a small ROM with missing test patterns
 - Add extra circuit mode to Input MUX – shift to ROM patterns after LFSR done
 - Important to compact extra test patterns

- Use diffracter:
 - Generates cluster of patterns in neighborhood of stored ROM pattern

- Transform LFSR patterns into new vector set
- Put LFSR and transformation hardware in full-scan chain
Response Compaction

- Severe amounts of data in CUT response to LFSR patterns – example:
 - Generate 5 million random patterns
 - CUT has 200 outputs
 - Leads to: 5 million x 200 = 1 billion bits response
- Uneconomical to store and check all of these responses on chip
- Responses must be compacted
Definitions

- **Aliasing** – Due to information loss, signatures of good and some bad machines match.
- **Compaction** – Drastically reduce # bits in original circuit response – lose information.
- **Compression** – Reduce # bits in original circuit response – *no information loss* – *fully invertible* (can get back original response).
- **Signature analysis** – Compact good machine response into *good machine signature*. Actual signature generated during testing, and compared with good machine signature.
- **Transition Count Response Compaction** – Count # transitions from 0 \(\rightarrow \) 1 and 1 \(\rightarrow \) 0 as a signature.
Transition Counting

(a) Logic simulation of good machine and fault a stuck-at-1.

(b) Transition counts of good and failing machines.
Transition Counting
Details

- Transition count:

\[C(R) = \sum_{i=1}^{m} (r_i \oplus r_{i-1}) \] for all \(m \) primary outputs

- To maximize fault coverage:

 - Make \(C(R_0) \) – good machine transition count – as large or as small as possible
LFSR for Response Compaction

- Use *cyclic redundancy check code* (CRCC) generator (LFSR) for response compacter
- Treat data bits from circuit POs to be compacted as a decreasing order coefficient polynomial
- CRCC divides the PO polynomial by its characteristic polynomial
 - Leaves remainder of division in LFSR
 - Must initialize LFSR to *seed value* (usually 0) before testing
- After testing – compare signature in LFSR to known good machine signature
- Critical: Must compute good machine signature
Example Modular LFSR Response Compacter

Characteristic Polynomial: $x^5 + x^3 + x + 1$

LFSR seed value is “00000”
Polynomial Division

Logic Simulation:

<table>
<thead>
<tr>
<th>Inputs</th>
<th>X^0</th>
<th>X^1</th>
<th>X^2</th>
<th>X^3</th>
<th>X^4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial State</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Logic simulation: \[\text{Remainder} = 1 + x^2 + x^3 \]

\[
\begin{align*}
0 \cdot x^0 + & 1 \cdot x^1 + 0 \cdot x^2 + & 1 \cdot x^3 + 0 \cdot x^4 + 0 \cdot x^5 + 0 \cdot x^6 \\
+ & 1 \cdot x^7 = & X^1 + X^3 + X^7
\end{align*}
\]
Symbolic Polynomial Division

\[x^5 + x^3 + x + 1 \]

\[
\begin{array}{c|ccccc}
 & x^2 & + & 1 \\
\hline
x^7 & x^7 & + & x^3 & + & x \\
x^7 & x^7 & + & x^5 & + & x^3 & + & x^2 \\
\hline
x^5 & x^5 & + & x^2 & + & x \\
x^5 & x^5 & + & x^3 & + & x + 1 \\
\hline
x^3 & + & x^2 & + & 1
\end{array}
\]

remainder

Remainder matches that from logic simulation of the response compacter!
Multiple-Input Signature Register (MISR)

Problem with ordinary LFSR response compacter:
- Too much hardware if one of these is put on each *primary output* (PO)

Solution: MISR – compacts all outputs into one LFSR
- Works because LFSR is linear – obeys *superposition principle*
- Superimpose all responses in one LFSR – final remainder is XOR sum of remainders of polynomial divisions of each PO by the characteristic polynomial
Standard MISR Example

[Diagram showing a circuit with labeled nodes and connections]
MISR Matrix Equation

- $d_i(t)$ – output response on PO_i at time t

\[
\begin{bmatrix}
X_0(t+1) \\
X_1(t+1) \\
\vdots \\
X_{n-3}(t+1) \\
X_{n-2}(t+1) \\
X_{n-1}(t+1)
\end{bmatrix}
=
\begin{bmatrix}
0 & 1 & \cdots & 0 & 0 \\
0 & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 1 & 0 \\
0 & 0 & \cdots & 0 & 1 \\
1 & h_1 & \cdots & h_{n-2} & h_{n-1}
\end{bmatrix}
\begin{bmatrix}
X_0(t) \\
X_1(t) \\
\vdots \\
X_{n-3}(t) \\
X_{n-2}(t) \\
X_{n-1}(t)
\end{bmatrix}
+
\begin{bmatrix}
d_0(t) \\
d_1(t) \\
\vdots \\
d_{n-3}(t) \\
d_{n-2}(t) \\
d_{n-1}(t)
\end{bmatrix}
\]
Modular MISR Example

\[
\begin{bmatrix}
X_0(t+1) \\
X_1(t+1) \\
X_2(t+1)
\end{bmatrix} =
\begin{bmatrix}
0 & 0 & 1 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{bmatrix} \begin{bmatrix}
X_0(t) \\
X_1(t) \\
X_2(t)
\end{bmatrix} +
\begin{bmatrix}
01010 \\
10110 \\
00010
\end{bmatrix}
\]
Multiple Signature Checking

- Use 2 different testing epochs:
 - 1st with MISR with 1 polynomial
 - 2nd with MISR with different polynomial
- Reduces probability of aliasing –
 - Very unlikely that both polynomials will alias for the same fault
- Low hardware cost:
 - A few XOR gates for the 2nd MISR polynomial
 - A 2-1 MUX to select between two feedback polynomials
Aliasing Probability

- **Aliasing** – when bad machine signature equals good machine signature
- **Consider error vector** $e(n)$ at POs
 - Set to a 1 when good and faulty machines differ at the PO at time t
- $P_{al} \equiv$ aliasing probability
- $p \equiv$ probability of 1 in $e(n)$
- **Aliasing limits:**
 - $0 < p \leq \frac{1}{2}, \quad p^k \leq P_{al} \leq (1 - p)^k$
 - $\frac{1}{2} \leq p \leq 1, \quad (1 - p)^k \leq P_{al} \leq p^k$
Aliasing Probability Graph

Bounds on Aliasing

$k = 1$

$k = 3$

$k = 11$

--- Bound for $0 \leq p \leq 1/2$

--- Bound for $1/2 \leq p \leq 1$
Additional MISR Aliasing

- MISR has more aliasing than LFSR on single PO
 - Error in CUT output d_j at t_i, followed by error in output d_{j+h} at t_{i+h}, eliminates any signature error if no feedback tap in MISR between bits Q_j and Q_{j+h}.
Aliasing Theorems

- **Theorem 15.1**: Assuming that each circuit PO d_{ij} has probability p of being in error, and that all outputs d_{ij} are independent, in a k-bit MISR, $P_{al} = \frac{1}{2^k}$, regardless of initial condition of MISR. Not exactly true – true in practice.

- **Theorem 15.2**: Assuming that each PO d_{ij} has probability p_j of being in error, where the p_j probabilities are independent, and that all outputs d_{ij} are independent, in a k-bit MISR, $P_{al} = \frac{1}{2^k}$, regardless of the initial condition.
Experiment Hardware

- 3 bit exhaustive binary counter for pattern generator
Transition Counting vs. LFSR

- LFSR aliases for f_{sa1}, transition counter for a_{sa1}

<table>
<thead>
<tr>
<th>Pattern</th>
<th>Responses</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Good</td>
</tr>
<tr>
<td>abc</td>
<td></td>
</tr>
<tr>
<td>000</td>
<td>0</td>
</tr>
<tr>
<td>001</td>
<td>1</td>
</tr>
<tr>
<td>010</td>
<td>0</td>
</tr>
<tr>
<td>011</td>
<td>0</td>
</tr>
<tr>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>101</td>
<td>1</td>
</tr>
<tr>
<td>110</td>
<td>1</td>
</tr>
<tr>
<td>111</td>
<td>1</td>
</tr>
</tbody>
</table>

Signatures

<table>
<thead>
<tr>
<th>Transition Count</th>
<th>LFSR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Good</td>
<td>3</td>
</tr>
<tr>
<td>a_{sa1}</td>
<td>3</td>
</tr>
<tr>
<td>f_{sa1}</td>
<td>0</td>
</tr>
<tr>
<td>b_{sa1}</td>
<td>1</td>
</tr>
<tr>
<td>000</td>
<td>001</td>
</tr>
<tr>
<td>100</td>
<td>101</td>
</tr>
<tr>
<td>001</td>
<td>001</td>
</tr>
<tr>
<td>010</td>
<td>010</td>
</tr>
</tbody>
</table>
Summary

- LFSR pattern generator and MISR response compacter – preferred BIST methods
- BIST has overheads: test controller, extra circuit delay, Input MUX, pattern generator, response compacter, DFT to initialize circuit & test the test hardware
- BIST benefits:
 - At-speed testing for delay & stuck-at faults
 - Drastic ATE cost reduction
 - Field test capability
 - Faster diagnosis during system test
 - Less effort to design testing process
 - Shorter test application times