Lecture Notes ECE 381

I. Husain

TOPIC 1

Single & Three Phase Circuits

Reference: Chapter 1: Zia A.Yamayee and Juan L. Bala Jr.

Electromechanical Energy Devices and Power

Systems, John Wiley & Sons, Inc., 1994.

8/25/2003 381 Topic 1 Single-phase and Three-phase Circuits

Single-phase Circuits

8/25/2003

381 Topic 1 Single-phase and Three-phase Circuits

Review

- Single phase circuit components:
 - Voltage or current sources
 - Impedances (resistance, inductance, and capacitance)
 - The components are connected in series or in parallel.
- The figure shows a simple circuit where a voltage source (generator) supplies a load (resistance and inductance in series).

8/25/2003

381 Topic 1 Single-phase and Three-phase Circuits

3

Single Phase Circuit

Review

· The voltage source produces a sinusoidal voltage wave

$$v(t) = \sqrt{2} V_{ms} \sin(\omega t)$$

where: V_{rms} is the rms value of the voltage (volts) ω is the angular frequency of the sinusoidal function (rad/sec)

$$\omega = 2\pi f = \frac{2\pi}{T}$$
 rad/sec $f = \frac{1}{T}$ Hz

f is the frequency (60 Hz in USA, 50 Hz in Europe). T is the time period (seconds).

• The peak value (max value) of the voltage is $V_p = \sqrt{2} V_{ms}$

8/25/2003

381 Topic 1 Single-phase and Three-phase Circuits

Review

The rms value is calculated by

$$V_{rms} = \sqrt{\frac{1}{T} \int_0^T v(t)^2 dt}$$

 The voltage direction is indicated by an arrow from g to a. This means during the positive half cycle the potential of point a is larger than g.

8/25/2003

381 Topic 1 Single-phase and Three-phase Circuits

_

Single Phase Circuit

Review

• The current is also sinusoidal

$$i(t) = \sqrt{2} I_{rms} \sin(\omega t - \phi)$$

where: I_{rms} is the rms value of the current.

φ is the phase-shift between current and voltage.

The rms current is calculated by the Ohm's Law:

$$I_{rms} = \frac{V_{rms}}{Z}$$

where: Z is the impedance.

8/25/2003

381 Topic 1 Single-phase and Three-phase Circuits

Review

- The impedances (in Ohms) are:
 - a) Resistance (R)
 - b) Inductive reactance

$$X_L = \omega L$$

- c) Capacitive reactance

$$X_C = \frac{1}{\omega C}$$

8/25/2003

381 Topic 1 Single-phase and Three-phase Circuits

7

Single Phase Circuit

Review

• The impedance of a resistance and a reactance connected in series is:

$$Z = \sqrt{R^2 + X^2}$$

• The phase angle is:

$$\phi = a \tan \frac{X}{R}$$

• Impedance calculation

8/25/2003

381 Topic 1 Single-phase and Three-phase Circuits

Review

- The generator current flows from **g** to **a** in the <u>positive</u> half cycle.
- The load current and voltages are in opposite direction
- The generator current and voltage are in the same direction.
- The load current in the positive half cycle flows from **b** to **g**.

8/25/2003

381 Topic 1 Single-phase and Three-phase Circuits

c

Single Phase Circuit

Review

- Inductive circuit
 - The φ phase-shift between the current and voltage is negative.
 - The current is lagging with respect to the voltage.

8/25/2003

381 Topic 1 Single-phase and Three-phase Circuits

Review

- Capacitive circuit
 - The φ phase shift between the current and voltage is positive.
 - The current is leading with respect to the voltage.

8/25/2003

381 Topic 1 Single-phase and Three-phase Circuits

11

Single Phase Circuit

Review

• Illustration of capacitive (leading) and inductive (lagging) current.

8/25/2003

381 Topic 1 Single-phase and Three-phase Circuits

Complex Notation

- Engineering calculations need the amplitude (rms value) and phase angle of voltage and current.
- The time function is used for transient analysis.
- The amplitude and phase angle can be calculated using complex notation.
- The voltage, current, and impedance are expressed by complex phasors.

8/25/2003

381 Topic 1 Single-phase and Three-phase Circuits

13

Single Phase Circuit

Review

Complex Notation

Impedance phasor: (resistance, capacitor, and inductance connected in series)

Rectangular form:

$$Z = R + j\omega L + (\frac{1}{j\omega C}) = R + j(X_L - X_C) = R + jX_T$$

Exponential form:

$$\mathbf{Z} = |\mathbf{Z}| e^{j\phi}$$

where:

$$\mathbf{Z} = \sqrt{\mathbf{R}^2 + \mathbf{X}^2}$$

$$\mathbf{Z} = \sqrt{R^2 + X^2}$$
 $\phi = a \tan(\frac{X}{R})$

8/25/2003

381 Topic 1 Single-phase and Three-phase Circuits

Complex Notation

Impedance phasor: (resistance, capacitor, and inductance connected in series)

Polar form:

$$\mathbf{Z} = |\mathbf{Z}| \angle \phi = |\mathbf{Z}| [\cos(\phi) + j\sin(\phi)]$$

$$\mathbf{Z} = \sqrt{\mathbf{R}^2 + \mathbf{X}^2}$$

$$\phi = a \tan{\left(\frac{X}{R}\right)}$$

$$R = Z \cos(\phi)$$

$$R = Z \cos(\phi)$$
 $X = Z \sin(\phi)$

8/25/2003

381 Topic 1 Single-phase and Three-phase Circuits

15

Single Phase Circuit

Complex Notation

Voltage phasor:

$$V=|V|e^{j\delta}$$
 or

$$V = |V| \angle \delta = |V| \cos \delta + j |V| \sin \delta$$

where : V is the rms value, and δ is the phase angle

Note: The supply voltage phase angle is often selected as the reference with $\delta=0$

8/25/2003

381 Topic 1 Single-phase and Three-phase Circuits

Review often

Complex Notation

Current phasor

$$\mathbf{I} = \frac{\mathbf{V}}{\mathbf{Z}} = \frac{\left| \mathbf{V} \right| e^{j\delta}}{\left| \mathbf{Z} \right| e^{j\phi}} = \left| \frac{\mathbf{V}}{\mathbf{Z}} \right| e^{j(\delta - \phi)} = \left| \frac{\mathbf{V}}{\mathbf{Z}} \right| \left[\cos(\delta - \phi) + j\sin(\delta - \phi) \right]$$

8/25/2003

381 Topic 1 Single-phase and Three-phase Circuits

17

Single Phase Circuit

Review

Kirchhoff's laws:

- Voltages:
 - The sum of the voltages around any loop is zero.
- Other formulation is:
 - The sum of generator voltages is equal to the sum of load voltages.

•Currents:

The sum of the currents entering any node point is zero

8/25/2003

381 Topic 1 Single-phase and Three-phase Circuits

Review

Kirchhoff's laws:

Example.

 If a generator supplies a resistance, an inductance, and a capacitance connected in series we have:

$$V_g = V_R + V_{X_L} + V_{X_C} = IR + Ij\omega L_{ind} + I\frac{1}{j\omega C}$$

 If a generator supplies a resistance, an inductance, and a capacitance connected in parallel we have:

$$I_{g} = I_{R} + I_{X_{L}} + I_{X_{C}} = \frac{V}{R} + \frac{V}{j\omega L} + \frac{V}{\frac{1}{j\omega C}}$$

8/25/2003

381 Topic 1 Single-phase and Three-phase Circuits

19

Single Phase Circuit

Review

Power calculation.

<u>Instantaneous power</u> is the product of the instantaneous voltage and current.

$$p(t) = v(t)i(t) = \sqrt{2} V \sin(\omega t) \sqrt{2} I \sin(\omega t - \phi)$$

Where:

$$v(t) = \sqrt{2} V \sin(\omega t)$$
 $i(t) = \sqrt{2} I \sin(\omega t - \phi)$

8/25/2003

381 Topic 1 Single-phase and Three-phase Circuits

Review

Power calculation. Instantaneous Power

Using the $\sin (\alpha + \beta)$ relation we have :

$$p(t) = VI \cos(\phi) [2 \sin^2(\omega t)] - VI \sin(\phi) [2 \sin(\omega t) \cos(\omega t)]$$

Using the $\sin^2{(\alpha)}$ and $\sin{(2\alpha)}$ relations the expression for power is:

$$p(t) = VI \cos(\phi) [1 - \cos(2\omega t)] - VI \sin(\phi) [\sin(2\omega t)]$$

$$(1) \longrightarrow (2) \longrightarrow (2)$$

8/25/2003

381 Topic 1 Single-phase and Three-phase Circuits

21

Single Phase Circuit

Review

The power equation is re-arranged as:

$$p(t) = P \left[1 - \cos(2\omega t) \right] - Q \left[\sin(2\omega t) \right]$$

Where:

- $P = VI \cos(\phi)$ is the real power or average power (in watts)
- $Q = VI \sin(\phi)$ is the reactive power (in VAR)

8/25/2003

381 Topic 1 Single-phase and Three-phase Circuits

Review

• Part 1 Real Power $P = VI \cos(\phi)$

The average value of p(t) is the real power. This is the power transferred from the generator to the load.

• Part (2) is the reactive power. $Q = VI \sin(\phi)$

The reactive power average value is zero because it oscillates:

- a) In the positive half cycle the reactive power flows from the generator to the load.
- b) In the negative half cycle the reactive power flows from the load to the generator.

8/25/2003

381 Topic 1 Single-phase and Three-phase Circuits

23

Single Phase Circuit

Review

Instantaneous Power Time Function

- · Oscillates with double frequency
- Curve shifted, positive area is larger than the negative one.
- The average transmitted power is: $P = \frac{1}{T} \int_{0}^{T} p(t) dt$

8/25/2003

381 Topic 1 Single-phase and Three-phase Circuits

Reactive and real power waveforms for different phase angle values.

Single Phase Circuit

Review

Complex Power

- · The complex notation can be used for power calculation.
- The complex power is defined as: <u>Voltage times the conjugate of the current.</u>

$$S = V \bar{I} = V I e^{\pm j\phi} = V I [\cos (\phi) \pm j \sin (\phi)] = P \pm j Q$$

 The power factor magnitude is defined as: the ratio of the real power and the absolute value of the apparent power. The power factor may be lagging or leading.

$$\mathbf{pf} = \mathbf{cos}(\phi) = \frac{P}{|\mathbf{S}|} = \mathbf{cos}(\mathbf{arg}(\mathbf{S}))$$

8/25/2003

381 Topic 1 Single-phase and Three-phase Circuits

27

Three-phase Circuits

Wye-Connected System

- The neutral point is grounded
- The three-phase voltages have equal magnitude.
- The phase-shift between the voltages is 120 degrees.

$$\begin{aligned} \mathbf{V_{an}} &= \left| \mathbf{V} \right| \angle 0 \circ = \mathbf{V} \\ \mathbf{V_{bn}} &= \left| \mathbf{V} \right| \angle -120 \circ = \left| \mathbf{V} \right| e^{-j120 \deg} \\ \mathbf{V_{cn}} &= \left| \mathbf{V} \right| \angle -240 \circ = \left| \mathbf{V} \right| e^{-j240 \deg} \end{aligned}$$

8/25/2003

381 Topic 1 Single-phase and Three-phase Circuits

Wye-Connected System

Line-to-line voltages are the difference of the phase voltages

$$V_{ab} = V_{an} - V_{bn} = \sqrt{3} V e^{j30 deg}$$

$$V_{bc} = V_{bn} - V_{cn} = \sqrt{3} \text{ V e}^{-j\,90\,\text{deg}}$$

$$V_{ca} = V_{cn} - V_{an} = \sqrt{3} \text{ V e}^{j150 \text{ deg}}$$

8/25/2003

381 Topic 1 Single-phase and Three-phase Circuits

29

Three-phase Circuits

Wye-Connected Loaded System

- The load is Z_a , Z_b , Z_c
- Each phase voltage drives current through the load.
- The phase current expressions are:

$$I_a = \frac{V_{an}}{Z_a} \qquad I_b = \frac{V_{bn}}{Z_b} \qquad I_c = \frac{V_{cn}}{Z_c}$$

• The system has ground current defined as:

$$\mathbf{I_0} = \mathbf{I_a} + \mathbf{I_b} + \mathbf{I_c}$$

8/25/2003

381 Topic 1 Single-phase and Three-phase Circuits

Wye-Connected System

- Phasor diagram is used to visualize the system voltages
- Wye system has two type of voltages: Line-to-neutral, and line-to-line.
- The line-to-neutral voltages are shifted with 120°
- The line-to-line voltage leads the line to neutral voltage with 30°
- The line-to-line voltage is $\sqrt{3}$ times the line-to-neutral voltage

8/25/2003

381 Topic 1 Single-phase and Three-phase Circuits

31

Three-phase Circuits

Wye-Connected Loaded System

 If the load is balanced (Z_a = Z_b = Z_c) then:

$$\mathbf{I_0} = \mathbf{I_a} + \mathbf{I_b} + \mathbf{I_c} = 0$$

- This case single phase equivalent circuit can be used (phase a, for instance, only)
- Phase b and c are eliminated

8/25/2003

381 Topic 1 Single-phase and Three-phase Circuits

Wye-Connected System with balanced load

- A single-phase equivalent circuit is used
- Only phase **a** is drawn, because the magnitude of currents and voltages are the same in each phase. Only the phase angles are different (-120° phase shift)
- The supply voltage is the <u>line to neutral voltage</u>.
- The single phase loads are connected to neutral or ground.

8/25/2003

381 Topic 1 Single-phase and Three-phase Circuits

33

Three-phase Circuits

Balanced Delta-Connected System

- The system has only one voltage : the line-to-line voltage (\mathbf{V}_{LL})
- The system has two currents:
 - line current
 - phase current
- The phase currents are:

$$I_{ab} = \frac{V_{ab}}{Z_{ab}}$$

$$\mathbf{I}_{bc} = \frac{\mathbf{V}_{bc}}{\mathbf{Z}_{bc}}$$

$$I_{bc} = \frac{V_{bc}}{Z}$$

8/25/2003

381 Topic 1 Single-phase and Three-phase Circuits

Delta-Connected System

The line currents are:

$$\mathbf{I}_{a} = \mathbf{I}_{ab} - \mathbf{I}_{ca}$$

$$I_b = I_{bc} - I_{ab}$$

$$I_c = I_{ca} - I_{bc}$$

• In a balanced case the line currents are:

$$I_a = \sqrt{3} I_{ab} e^{-i 30 deg}$$

or

$$I_{line} = \sqrt{3} I_{phase} e^{-i 30 deg}$$

8/25/2003

381 Topic 1 Single-phase and Three-phase Circuits

35

Three-phase Circuit

Delta-Connected System

- The phasor diagram is used to visualize the system currents
- The system has two type of currents: line and phase currents.
- The delta system has only <u>line-to-line voltages</u>, that are shifted by 120°
- The phase currents lead the line currents by 30 $^{\circ}$
- The line current is √3 times the phase current and shifted by 30 degree.

8/25/2003

381 Topic 1 Single-phase and Three-phase Circuits

Power Calculation

• The three phase power is equal the sum of the phase powers

$$\mathbf{P} = \mathbf{P_a} + \mathbf{P_b} + \mathbf{P_c}$$

• If the load is balanced:

$$\mathbf{P} = \mathbf{3} \; \mathbf{P}_{\mathrm{phase}} = \mathbf{3} \; \mathbf{V}_{\mathrm{phase}} \, \mathbf{I}_{\mathrm{phase}} \; \mathbf{cos} \left(\phi \right)$$

• Wye system: $V_{phase} = V_{LN} - I_{phase} = I_L - V_{LL} = \sqrt{3} \ V_{LN}$

$$P = 3 V_{\text{phase}} I_{\text{phase}} \cos (\phi) = \sqrt{3} V_{\text{LL}} I_{\text{L}} \cos (\phi)$$

• Delta system: $I_{Line} = \sqrt{3} I_{phase} V_{LL} = V_{phase}$

$$\mathbf{P} = 3 \mathbf{V}_{\text{phase}} \mathbf{I}_{\text{phase}} \cos \left(\phi \right) = \sqrt{3} \mathbf{V}_{\text{LL}} \mathbf{I}_{\text{L}} \cos \left(\phi \right)$$

8/25/2003

381 Topic 1 Single-phase and Three-phase Circuits

37

Three-phase Circuit

Circuit conversions

 A delta circuit can be converted to an equivalent wye circuit. The equation for phase a is:

$$\mathbf{Z}_{\mathbf{a}} = \frac{\mathbf{Z}_{\mathbf{a}\mathbf{b}} \; \mathbf{Z}_{\mathbf{c}\mathbf{a}}}{\mathbf{Z}_{\mathbf{a}\mathbf{b}} + \mathbf{Z}_{\mathbf{b}\mathbf{c}} + \mathbf{Z}_{\mathbf{c}\mathbf{a}}}$$

- Conversion equation for a balanced system is:

$$\mathbf{Z}_{\mathbf{a}} = \frac{\mathbf{Z}_{\mathbf{ab}}}{3}$$

8/25/2003

381 Topic 1 Single-phase and Three-phase Circuits

Power measurement

- In a four-wire system (3 phases and a neutral) the real power is measured using three single-phase watt-meters.
- In a three-wire system (three phases without neutral) the power is measured using only two singlephase watt-meters.
 - The watt-meters are supplied by the line current and the line-to-line voltage.

•- The total power is the algebraic sum of the two watt-meters reading.

8/25/2003

381 Topic 1 Single-phase and Three-phase Circuits