Higher Myocardial Strain Rates During Isovolumic Relaxation Phase Than During Ejection Characterize Acutely Ischemic Myocardium

Cristina Pislaru, MD,* Peter C. Anagnostopoulos, MD,† James B. Seward, MD, FACC,*† James F. Greenleaf, PhD,* Marek Belohlavek, MD, PhD, FACC†
Rochester, Minnesota

OBJECTIVES
The aim of this study was to define an index that can differentiate normal from ischemic myocardial segments that exhibit postsystolic shortening (PSS).

BACKGROUND
Identification of ischemia based on the reduction of regional systolic function is sometimes challenging because other factors such as normal nonuniformity in contraction between segments, tethering effect, pharmacologic agents, or alterations in loading conditions can also cause reduction in regional systolic deformation. The PSS (contraction after the end of systole) is a sensitive marker of ischemia; however, inconsistent patterns have also been observed in presumed normal myocardium.

METHODS
Twenty-eight open-chest pigs underwent echocardiographic study before and during acute myocardial ischemia induced by coronary artery occlusion. Ultrasound-derived myocardial longitudinal strain rates were calculated during systole (S SR), isovolumic relaxation (IVRSR), and rapid filling (E SR) phases in both ischemic and normal myocardium. Systolic strain (ε sys) and postystolic strain (ε ps) were calculated by integrating systolic and postystolic strain rates, respectively.

RESULTS
During ischemia, S SR, E SR, and ε ps in ischemic segments were significantly lower (in magnitude) than in nonischemic segments or at baseline. However, some overlap occurred between ischemic and normal values for all three parameters. At baseline, 18 of 28 animals had negative IVRSR (i.e., PSS) in at least one segment. During coronary artery occlusion, IVRSR became negative and larger in magnitude than S SR in all ischemic segments. The IVRSR/S SR and ε ps best differentiated ischemic from nonischemic segments.

CONCLUSIONS
In the presence of reduced regional systolic deformation, a higher rate of PSS than systolic shortening identifies acutely ischemic myocardium. (J Am Coll Cardiol 2002;40:1487–94)

© 2002 by the American College of Cardiology Foundation

Reduced myocardial systolic strain (ε sys) (i.e., deformation) and strain rate (i.e., rate of deformation) occur during regional ischemia (1–5). However, alterations in regional strain were also found in normal myocardium adjacent to an infarct or even in remote segments (6,7). Loading conditions, inotropic agents, and impairment in global function can also affect regional strain and strain rates (8). Moreover, the normal heterogeneity in segmental contraction has to be taken into account. To discriminate normal from abnormal, a common solution relies on comparison of the measured parameter with the normal range of its values (9). An alternative strategy is to use a normalized measure, that is, an index that discriminates normal from ischemic myocardium even if regional or global systolic function is reduced.

Postsystolic shortening (PSS), i.e., contraction after aortic valve closure, has long been described as a marker of ischemia (10–14) and potentially of viability (11,15,16). However, invasive or complex time-consuming methods for measurement of PSS have been used in those studies, thus limiting further clinical investigation. Doppler myocardial imaging and strain rate imaging (SRI) are new noninvasive techniques that can quantify regional motion and deformation rate, respectively, with high spatial and temporal resolution (17–19). Doppler-derived myocardial strain has been validated in vivo against sonomicrometry (4) and magnetic resonance imaging (20). Ischemic PSS has been identified using SRI as shortening occurring during the isovolumic relaxation phase (21). The extent of regions with ischemic PSS, as measured by SRI, has been shown to approximate the extent of the myocardium at risk (22). However, PSS has also been observed in presumably normal myocardium or adjacent to the ischemic area (11,23–26). The aim of this study was to define an index that can differentiate normal from ischemic myocardial segments that exhibit PSS.

METHODS
Animal instrumentation. Pigs weighing 30 to 60 kg were anesthetized with an infusion of ketamine, fentanyl, and amidate. Body temperature was kept constant with a heating pad. Following a median sternotomy, the heart was exposed in a pericardial cradle. All animals received intravenous heparin. After baseline echocardiographic measurements, total or subtotal coronary artery occlusion of the mid or distal portion of the left anterior descending (LAD), left
Identification of the myocardium at ischemic risk. The location of the myocardium at ischemic risk was identified using either in vivo myocardial contrast echocardiography or dye staining of cardiac specimens. In 16 animals subjected to LAD ligature, contrast microbubbles (NC100100, Nycomed Imaging AS, Oslo, Norway) were infused intravenously, and ECG-gated end-diastolic frames were collected in three standard apical views using the second harmonic mode (1.7 MHz transmit/3.4 MHz receive, mechanical index 0.5). In the remaining animals, Evans blue solution was injected intravenously at the conclusion of the experiment with the coronary artery occlusion in place. In this way, myocardium at ischemic risk remained unstained while normally perfused myocardium stained blue.

After euthanasia, each heart was excised and cut orthogonal to the long axis of the left ventricle (LV) into 3 to 7-mm-thick slices. Slices were photographed using a digital camera, and the stained heart was reconstructed in the computer in three dimensions using dedicated software. The apical views were obtained from computer-generated sections through the heart (22).

Ultrasonic data acquisition and analysis. Tissue velocity data in three standard apical views (two-chamber, four-chamber, and apical long-axis) were collected from an epicardial approach using a commercial ultrasound scanner (GE Vingmed System FiVe, GE Medical Systems, Milwaukee, Wisconsin) and a 3.5-MHz transducer. Digital cine loops (>60 frames/s) of one to three cardiac cycles were collected at baseline and during occlusion. Data were transferred to a computer for offline analysis. Strain rate was calculated as the velocity difference between two points along the ultrasound beam divided by the distance between the points (5 mm in our analysis) (19). In our experiments assessing longitudinal deformation of the LV segments, negative strain rates reflected the rate of longitudinal shortening, and positive strain rates reflected the rate of longitudinal lengthening.

Guided by the location of the perfusion defect on either the stained cardiac specimen image or on the myocardial contrast echocardiography image, mean strain rate values were measured in two segments: 1) within the ischemic myocardium, and 2) within the normally perfused myocardium. Both segments were selected from the same LV wall (septal wall for LAD occlusions, inferior wall for RCA occlusions, and posterior wall for LCX occlusions). Care was taken to align the LV walls parallel with the ultrasound beam and to avoid the apex. The time of the aortic valve closure and mitral valve opening was identified from the underlying gray-scale images. End-diastole was considered at the peak R-wave of the ECG and end-systole at the time of the aortic valve closure. Peak strain rate values were measured during systolic (SSR), isovolumic relaxation (IVRSR), and early filling (Esys) phases (Fig. 1a). Peak SSR was measured during the ejection period, neglecting the occurrence of any early systolic bulging. The time to the onset of longitudinal shortening (t-SSR) was measured as the time from the ECG peak R-wave to the onset of SSR wave (Fig. 1a). Postsystolic-to-systolic strain rate ratio was obtained as IVRSR/SSR. This index was not calculated when the ischemic segments exhibited inverted (positive) SSR values (three animals). Strain was obtained by integrating strain rate values over time (19). The epeak and maximum strain (emax) were measured at end-systole and at the time of maximum deformation, respectively (Fig. 1b). Postsystolic strain (eps) was calculated as the difference between epeak and epeak expressed as a percentage of epeak.

Statistical analysis. Statistical analysis was performed with SAS software (27). Differences between ischemic and non-ischemic segments and between baseline and occlusion were compared using paired t tests and applying Bonferroni correction for multiple comparisons. The performance of strain and strain rate parameters, and the optimal cutoff points for detection of ischemia, were analyzed using receiver operating characteristic analysis. The normal distribution was tested and confirmed using the Shapiro-Wilk statistic. The results are presented as mean ± SD.

RESULTS

A total of 35 experiments were performed; 7 animals died immediately after coronary artery occlusion. The remaining 28 pigs were subjected to LAD (n = 18), LCX (n = 5), or RCA (n = 5) occlusion. The average time from occlusion to the echocardiographic study was 20 ± 18 min. Mean heart rate did not change between baseline and occlusion (88 ± 19 beats/min and 90 ± 20 beats/min, respectively, p =
Table 1. During coronary artery occlusion, SSR and ESR from ischemic and nonischemic segments are shown in occlusion. Mean strain rate values in each cardiac phase ischemic and nonischemic segments before and after LAD occlusion are shown in Table 2 and Figure 3. As expected, \(\varepsilon_{sys} \) was severely reduced (in magnitude) or even reversed (positive values), while \(\varepsilon_{ps} \) significantly increased in the ischemic segments. The \(\varepsilon_{ps} \) varied between 0% and 36% in normally perfused segments, and between 18% and 330% in ischemic segments.

Using the receiver operating characteristic analysis, the highest values for area under the curve were obtained for \(\frac{IVR_{SR}}{SSR} \) (0.99), \(\varepsilon_{ps} \) (0.99), and \(S_{SR} \) (0.95). A cutoff value of 0.74 s\(^{-1}\) for \(S_{SR} \), 1.01 for \(VSR_{SR}/SSR \), and 41% for \(\varepsilon_{ps} \) had 93%, 98%, and 96% sensitivity, and 87%, 100%, and 100% specificity to detect acute ischemia.

For practical application of our method, we developed custom software to generate parametric displays (28) of regional function based on both systolic and diastolic SRI parameters. Examples from two animals are shown in Figure 4. The \(S_{SR} \) and \(IVR_{SR}/SSR \) ratio were calculated for each segment and the results color-coded and overlaid on the gray-scale image. Ischemic myocardium is delineated as an area with low \(S_{SR} \) and \(IVR_{SR}/SSR >1 \).

DISCUSSION

This study demonstrates that myocardial segments with reduced systolic deformation caused by severe ischemia exhibit a higher rate of shortening during the isovolumic relaxation phase than during the ejection phase.

PSS in normal myocardium. In our experiments, small magnitudes of shortening after the aortic valve closure were found in normal segments in apical and basal segments in 18

\(\text{0.42, while mean blood pressure slightly decreased (100 } \pm \text{ 16 mm Hg and 91 } \pm \text{ 18 mm Hg, respectively; } p < 0.05. \)
of 28 animals. This pattern of prolonged shortening (i.e., PSS) after the end of the mechanical systole may be due to physiologic asynchrony in depolarization and repolarization between segments (29) or to intersegmental interaction in contraction and relaxation rates (30). Similar delays in wall motion in basal segments have been observed using ultrasonic crystals and digitized cine-ventriculograms (11,23–26). The magnitude of PSS measured in those studies and considered normal varied between 6% and 15% of total systolic shortening. In our data, using 15% as a cutoff value for εps, five normal segments at baseline and two nonischemic segments during ischemia would be erroneously classified as ischemic (Fig. 3).

Changes in regional systolic parameters during acute ischemia. A significant reduction in SRR was found in the ischemic segments, which agrees with previous studies using SRI (1,2,5). In those studies and in our present study, there was an overlap between the SRR values for normal and ischemic segments, thereby limiting the sensitivity and specificity of this parameter for identifying regional ischemia in individual cases. The measured range and cutoff values of SRR for identifying ischemia will likely depend on the loading conditions (4), myocardial contractility state (8), segment analyzed (9), and type of strain measured (i.e., longitudinal, radial, or circumferential) (31). Widespread SRR values indicated that this parameter alone cannot reliably detect ischemia.

The delayed onset of systolic shortening, another objective marker of asynchrony during regional ischemia (32), was readily quantified by SRI. Although all ischemic segments presented PSS, not all manifested this asynchrony in the onset of contraction. This finding agrees with previous studies showing that PSS may be accounted for without invoking asynchrony of activation (30). The preserved onset of SRR may be related to the persistence of regional isovolumic contraction if the ischemic insult is less severe (33,34).

Changes in diastolic parameters during ischemia. Simultaneously with the reduction in SRR, there was a prominent increase in IVR in the ischemic segment in all animals and all ischemic segments. High IVR (generally >0.5 s−1) indicated that shortening of the ischemic segment occurred at a faster rate than in a normal segment favored by the LV pressure fall and, consequently, segment unloading (35). Our finding of a significant increase in magnitude of ϵ_{ps} during acute ischemia agrees with sonomicrometry studies (10,11,13). In addition, we now show that rates of deformation during PSS can be used to identify acute ischemia. Still, IVR alone did not discriminate normal from ischemic in all cases. Further studies are required to test the influence of loading on IVR. The mechanism of ischemic PSS is still under debate; altered local activation or electromechanical coupling, delayed myocardial relaxation, and passive elastic recoil have been proposed as potential mechanisms (11,30).
The most important finding of this study was that although the SSR value was significantly reduced, the IVR SR was consistently higher than S SR in the acutely ischemic segments. Seven ischemic segments had S SR value higher (in magnitude) than the range of S SR values measured at baseline (Fig. 2); however, all those segments had IVR SR/SSR > 1. The combined systolic and diastolic parameters (IVR SR/SSR and \(e_p \)) had higher sensitivities and specificities than systolic parameters alone (such as S SR and \(e_{sys} \)) to detect ischemia.

Implications. Conventional assessment of wall motion abnormalities is subjective and experience-dependent. New high frame-rate quantitative methods, such as Doppler myocardial imaging and SRI, can measure regional function, thus avoiding errors induced by subjective visual evaluation. Moreover, the time of aortic valve closure is of critical importance when quantifying local function, because maximum shortening may be mistakenly reported as systolic shortening, although a substantial proportion may occur after the end of ejection. This correct timing can only be achieved with quantitative methods that can accurately measure timing and function.

Table 2. Strain Parameters at Baseline and During Ischemia

<table>
<thead>
<tr>
<th></th>
<th>(e_{sys}) (%)</th>
<th>(e_{max}) (%)</th>
<th>(e_p) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Baseline</td>
<td>Ischemia</td>
<td>Baseline</td>
</tr>
<tr>
<td>Septal wall (n = 18)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ischemic segment</td>
<td>-18.4 ± 4.9</td>
<td>-0.9 ± 7.7*</td>
<td>-19.5 ± 5.1</td>
</tr>
<tr>
<td>Nonischemic segment</td>
<td>-16.1 ± 4.5</td>
<td>-18.3 ± 5.4</td>
<td>17.2 ± 5.0</td>
</tr>
<tr>
<td>Posterior wall (n = 5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ischemic segment</td>
<td>-14.0 ± 2.2</td>
<td>1.0 ± 4.5†</td>
<td>-14.9 ± 2.2</td>
</tr>
<tr>
<td>Nonischemic segment</td>
<td>-15.4 ± 3.2</td>
<td>-15.5 ± 5.2</td>
<td>-15.9 ± 3.1</td>
</tr>
<tr>
<td>Inferior wall (n = 5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ischemic segment</td>
<td>-15.8 ± 5.0</td>
<td>3.9 ± 8.1†</td>
<td>-15.9 ± 5.1</td>
</tr>
<tr>
<td>Nonischemic segment</td>
<td>-11.4 ± 2.5</td>
<td>-13.3 ± 2.8</td>
<td>-12.2 ± 3.0</td>
</tr>
</tbody>
</table>

*\(p < 0.0001 \), †\(p < 0.01 \) vs. baseline or nonischemic segment.

\(e_{sys} \) = systolic strain; \(e_{max} \) = maximum strain; \(e_p \) = post systolic strain \([100 (e_{max} - e_{sys})/e_{max}] \).
achieved by using high frame rates (at least 80 frames/s) (18). Clearly, shortening after the aortic valve closure will contribute nothing to ejection but can interfere with early filling. Early systolic bulging and PSS are markers of regional asynchrony and were easily identified and quantified using this high frame-rate quantitative method. Measurement of only end-systolic and end-diastolic wall thickness may mask important information available from the entire cardiac cycle (32,36). Although current quantitation with SRI is time-consuming, by using semiautomatic myocardial edge detection and constructing parametric displays of regional dysfunction, the ischemic region can be more objectively defined with less user interaction.

It has been suggested that the detection of regional diastolic abnormalities during demand ischemia may become a new paradigm in stress echocardiography for detection of coronary artery disease (37). Because dynamic and opposite changes in systolic shortening and PSS gradually progress during regional ischemia (5,10,13), their ratio should emphasize this transition. The utility of this index to

Figure 3. Regional strain parameters at baseline and during ischemia. Systolic strain (e_{sys}) (left panel) was significantly reduced and even inverted (reflecting bulging), while postsystolic strain (e_{ps}) (right panel) significantly increased in the ischemic (solid square) but not in normally perfused segments (open circle). Some overlap between normal and ischemic e_{sys} and e_{ps} values was observed.

Figure 4. Parametric images generated from strain rate data in two animals, one subjected to left anterior descending (LAD) and the other to right coronary artery (RCA) occlusion. Each manually delineated left ventricular wall (a and e) was divided into 10 segments (to increase the spatial resolution). Peak systolic strain rates (S_{SR}) (b and f) and postsystolic-to-systolic strain rate ratio (IVRS_{SR}/S_{SR}) (c and g) were calculated and used to generate corresponding parametric images. Ischemic myocardium was outlined as the region with reduced S_{SR} and IVR$S_{SR}/S_{SR} > 1$. Note the reduced systolic strain rates in the border zones, while the IVRS_{SR}/S_{SR} is < 1 in these segments. Panels d and h show the extent of perfusion defect at myocardial contrast echocardiography or postmortem staining.
detect inducible ischemia in patients needs to be further tested.

The PSS has been related to myocardial viability in animal and human studies (11,15,16). Whether our index could be a measure for regional viability remains to be tested. Our preliminary results suggest that IVR$_{SR}$ values decrease in magnitude during the progression from ischemic to transmural infarct (38).

Limitations. Strain rate is prone to noise because it is a gradient of velocities. Similar to other Doppler measurements, strain rate values are affected by the angle between the ultrasound beam and direction of wall motion; our index is a ratio and, therefore, the angle dependency may be markedly reduced. Myocardial blood flow was not measured in this study, and the mild reduction in S_{SR} observed in some animals may be the result of persistent collateral blood flow or incomplete coronary artery occlusion. However, this limitation does not invalidate our findings. It has been shown that open-chest preparation (employed in this study for optimal imaging) may reduce diastolic strain rates (during early and late LV filling) but not S_{SR} (39); however, similar findings on PSS were previously described in a closed-chest preparation (3,5). The effect of loading on strain rate parameters has to be further tested; we anticipate that loading will alter the strain rate ratio, predominantly by changes induced in the e_{SR} rates and strain (4,13). Whether our findings apply to a multivessel disease model needs to be confirmed. Finally, conditions associated with delayed local activation not necessary induced by ischemia, can also exhibit patterns of PSS (40).

CONCLUSIONS

This study demonstrates that acutely ischemic segments exhibit a higher rate of regional deformation during the isovolumic relaxation phase than during the ejection phase. Although significant reduction in systolic strain rate and strain parameters occurred during ischemia, some overlap between ischemic and normal values was observed. Similarly, the presence of PSS does not always identify ischemia because normal segments occasionally exhibit PSS of small magnitude. Therefore, a decision based solely on a single parameter alone is not always straightforward. The combination of both systolic and diastolic parameters best differentiates normal from ischemic segments.

Acknowledgments

The authors thank Sorin V. Pislaru, MD, PhD, for help with the statistical analysis, and Jennifer Milliken for her secretarial assistance.

REFERENCES