Digital Integrated Circuit Design

Lecture 7 – Logic Families

![Circuit Diagram]

Adib Abrishamifar
EE Department
IUST
Contents

- Logic Families on a Glance
 - Diode Logic (DL)
 - Resistor Transistor Logic (RTL)
 - Diode Transistor Logic (DTL)
 - Modified DTL (NAND)
 - Transistor Transistor Logic (TTL)
 - Standard TTL
 - High Speed TTL (74HXX)
 - Tri-State Logic
 - Storage Delay Time
 - Schottky TTL (74SXX)
 - Low Power Schottky Clamped TTL (74LSXX)

- Advanced Schottky (74ASXX)
- Advanced Low Power Schottky (74ALSXX)
- Emitter Coupled Logic (ECL)
- I²L, MTL
- STL
- Integrated Schottky Logic (ISL)
- Compatibility of Logic Families
- Noise Margins of Logic Families
- Summary
Logic Families on a Glance

- Based on Underlying Semiconductor Technology
 - Transistor-Transistor Logic: TTL
 - Bipolar technology
 - Dual-in-line package (DIP)
 - Surface-mount technology (SMT): Smaller
 - Metal Oxide Semiconductors: MOS
 - Metal Oxide Semiconductor (MOS) technology
 - Very low power
Logic Families on a Glance

TTL Families
- 74 Standard
- 74L Low power
- 74H High speed
- 74S Schottky
- 74LS Low power Schottky
- 74AS Advanced Schottky
- 74ALS Advance Low power Schottky
Logic Families on a Glance

- Standard, 74 series - introduced by Texas Instruments in 1964
- Low-power, 74L series - large resistor values reduce power dissipation
- High-speed, 74H series - small resistor values & Darlington pair reduce propagation delay
- Schottky, 74S series - Schottky barrier diode is used to reduce time delay
- Low-power Schottky, 74LS series - like 74S but uses larger resistor values
- Advanced Schottky, 74AS series - improved version of 74S
- Advanced low-power Schottky, 74ALS – has the lowest power-speed product
Logic Families on a Glance

- **CMOS Families**
 - 40xx/45xx: Metal-gate CMOS
 - 74C: TTL-compatible CMOS
 - 74HC: High speed CMOS
 - 74ACT: Advanced CMOS-TTL compatible
Logic Families on a Glance

- 4000/14000 series - introduced by RCA/Motorola
- 74C series - pin for pin and function for function compatible with TTL devices having the same number, e.g. CMOS 74C74 and TTL 7474
- 74HC series - high speed (comparable with TTL) and higher output current
- 74HCT series - voltage levels compatible with that of TTL devices, i.e. a TTL device can directly drive a 74HCT device
- Compared to TTL families; lower power dissipation and slower speed
Logic Families on a Glance

- Advanced CMOS Logic
 - First-Generation Devices
 - No output slew rate control
 - Serious noise!
 - Second-Generation Devices
 - Output slew rate control or TTL level output voltages
 - Third-Generation Devices
 - Vcc: 3.3V
 - Logic families optimized
Logic Families on a Glance

Advanced CMOS Logic

<table>
<thead>
<tr>
<th>Logic Family</th>
<th>Manufactures</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Generation, 5V</td>
<td></td>
</tr>
<tr>
<td>54/74 AC, ACT</td>
<td>National, Motorola, Harris</td>
</tr>
<tr>
<td>54/74 AC11, ACT11</td>
<td>Texas Instruments, Philips</td>
</tr>
<tr>
<td>54/74FCT, FCT-A</td>
<td>IDT, Cypress, Harris</td>
</tr>
<tr>
<td>29C800</td>
<td>AMD</td>
</tr>
<tr>
<td>Second Generation, 5V</td>
<td></td>
</tr>
<tr>
<td>54/74ACQ, ACTQ</td>
<td>National</td>
</tr>
<tr>
<td>54/74FCT-T, FCT-AT, FCT-CT</td>
<td>IDT</td>
</tr>
<tr>
<td>Third Generation, 3.3V</td>
<td></td>
</tr>
<tr>
<td>54/74LVQ</td>
<td>National</td>
</tr>
<tr>
<td>54/74FCT3</td>
<td>IDT</td>
</tr>
<tr>
<td>74LVC</td>
<td>Texas Instruments</td>
</tr>
</tbody>
</table>
Logic Families on a Glance

- Logic family letter designator
 - 5V family: AC, ACT, FCT, etc
 - With T, TTL compatible input threshold at normal TTL supply voltage levels
 - Low-voltage: LVC, LVQ, FCT3, etc
 - TTL compatible input threshold

- FCT and 29C800 families
 - Bus interface families
 - They are not true logic families since they don’t have NANDs, NORs, etc
Logic Families on a Glance

- BiCMOS Logic
 - BiCMOS technology
 - CMOS input structure + CMOS internal logic + Bipolar output structure
 - high speed, high drive, low power

<table>
<thead>
<tr>
<th>Logic family</th>
<th>Manufactures</th>
</tr>
</thead>
<tbody>
<tr>
<td>54/74ABT</td>
<td>Texas Instruments, Philips</td>
</tr>
<tr>
<td>74BC</td>
<td>Motorola, Toshiba</td>
</tr>
<tr>
<td>54/74BCT</td>
<td>Texas Instruments</td>
</tr>
<tr>
<td>54/74LVT</td>
<td>Texas Instruments</td>
</tr>
</tbody>
</table>
Simple Comparison of Logic Families

<table>
<thead>
<tr>
<th>Gate / Par.</th>
<th>CMOS</th>
<th>TTL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>74HC</td>
<td>4000</td>
</tr>
<tr>
<td>Static P.(mw/Gate)</td>
<td>25×10⁻⁶</td>
<td>10⁻³</td>
</tr>
<tr>
<td>100KHz (mw/Gate)</td>
<td>0.17</td>
<td>0.1</td>
</tr>
<tr>
<td>PDT(ns)</td>
<td>8</td>
<td>50</td>
</tr>
<tr>
<td>Max Fr.(MHz)</td>
<td>40</td>
<td>12</td>
</tr>
<tr>
<td>S×P(Pj)</td>
<td>1.4</td>
<td>11</td>
</tr>
<tr>
<td>Fanout</td>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td>Max in. Current (mA)</td>
<td>0.001</td>
<td>0.001</td>
</tr>
</tbody>
</table>
Contents

- Logic Families on a Glance
 - Diode Logic (DL)
 - Resistor Transistor Logic (RTL)
 - Diode Transistor Logic (DTL)
 - Modified DTL (NAND)
 - Transistor Transistor Logic (TTL)
 - Standard TTL
 - High Speed TTL (74HXX)
 - Tri-State Logic
 - Storage Delay Time
 - Schottky TTL (74SXX)
 - Low Power Schottky Clamped TTL (74LSXX)

- Advanced Schottky (74ASXX)
- Advanced Low Power Schottky (74ALSXX)
- Emitter Coupled Logic (ECL)
- I^2L, MTL
- STL
- Integrated Schottky Logic (ISL)
- Compatibility of Logic Families
- Noise Margins of Logic Families
- Summary
In this lecture we assume the following parameters for a PN junction and Bipolar transistor:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_γ</td>
<td>0.7V</td>
</tr>
<tr>
<td>$V_{BE_{off}}$</td>
<td>0.5V</td>
</tr>
<tr>
<td>$V_{BE_{on}}$</td>
<td>0.7V</td>
</tr>
<tr>
<td>$V_{BE_{sat}}$</td>
<td>0.8V</td>
</tr>
<tr>
<td>$V_{CE_{sat}}/max$</td>
<td>0.1/0.2V</td>
</tr>
</tbody>
</table>
AND Gate

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>Vo</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0.7</td>
</tr>
<tr>
<td>0</td>
<td>5</td>
<td>0.7</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0.7</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>5.7</td>
</tr>
</tbody>
</table>

\[R \]

\[+10 \]

\[Vo \]
If we series the two equal DL sections the minimum of output voltage will be increased.

\[V_{o_{\text{Min}}} = 2 \times 0.7 = 1.4 \]
\(V_y \) Canceling

\[\Rightarrow V_{o_{\text{Max}}} = \frac{10 - 0.7}{10 + 4} \times 4 = 2.66 \]

\[\Rightarrow V_{c_{\text{Max}}} = 3.36 \]

\[\begin{align*}
 & Vi \leq 2.66 \Rightarrow V_c = Vi + 0.7 \Rightarrow V_0 = Vi \\
 & Vi \geq 2.66 \Rightarrow V_o = 2.66
\end{align*} \]
VTC

What is the value of NM=?
OR Gate

- V_{th} may be selected equal to zero

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>Vo</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>-0.7</td>
</tr>
<tr>
<td>0</td>
<td>5</td>
<td>5-0.7</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>5-0.7</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>5-0.7</td>
</tr>
</tbody>
</table>
XOR

\[Y = \overline{A}B + AB \]
Wired OR

- Open (normally collector) outputs connected together to a common pull-up (or pull-down) resistor
- Any collector can pull the signal line low
Wired OR
Wired AND

A → A + B → Y
B
C
D

\(V_{th} \)

\(R \)
Logic Families on a Glance
- Diode Logic (DL)
- Diode Transistor Logic (RTL)
- Resistor Transistor Logic (RTL)
- Diode Transistor Logic (DTL)
- Modified DTL (NAND)
- Transistor Transistor Logic (TTL)
- Standard TTL
- High Speed TTL (74HXX)
- Tri-State Logic
- Storage Delay Time
- Schottky TTL (74SXX)
- Low Power Schottky Clamped TTL (74LSXX)

Advanced Schottky (74ASXX)
- Advanced Low Power Schottky (74ALSXX)
- Emitter Coupled Logic (ECL)
- I^2L, MTL
- STL
- Integrated Schottky Logic (ISL)
- Compatibility of Logic Families
- Noise Margins of Logic Families
- Summary
Resistor Transistor Logic (RTL)

- The first active Gate (NOR)

- Rb for Vbe equalization
It is not good for NAND Gate because the output must be only grounded when all of three transistors are activated (Thermal consideration,...)

\[I_{CS} = \frac{V_{cc} - V_{CESat}}{R_c} = \frac{3.6 - 0.1}{640} = 5.47\text{mA} \]

\[I_{Bsat} = \frac{I_{csat}}{\beta_{min}} = \frac{5.47}{30} = 0.182\text{mA} \quad [10 \leq \beta_{min} \leq 50] \]

\[\Rightarrow V_{IH} = V_{BEsat} + 450\Omega \times 0.182\text{mA} = 0.88 \Rightarrow V_{IH} = 0.88 \]

\[V_{BEon} = 0.7 \Rightarrow V_{IL} \approx 0.5 \quad \text{(it is not a standard but we assume)} \]

\[\Rightarrow NML = V_{IL} - V_{OL} = 0.5 - 0.2 = 0.3 \]
RTL

- NML is low then choose the V_{OH} for $NMH > 0.3$

\[NMH = V_{OH} - V_{IH} \Rightarrow 0.3 = V_{OH} - 0.88 \Rightarrow V_{OH} = 1.18V \]

- This value is used for calculating Fan out

\[
\begin{align*}
I_{OH} &= \frac{3.6 - 1.18}{640} = 3.78mA \\
I_{IH} &= \frac{1.18 - 0.8}{450} = 0.844mA \\
\Rightarrow \text{Fanout} &= FO = \frac{I_{OH}}{I_{IH}} = \frac{3.78}{0.844} = 4.48 \rightarrow FO = 4
\end{align*}
\]
RTL

- VTC
Contents

- Logic Families on a Glance
- Diode Logic (DL)
- Resistor Transistor Logic (RTL)
- Diode Transistor Logic (DTL)
- Modified DTL (NAND)
- Transistor Transistor Logic (TTL)
- Standard TTL
- High Speed TTL (74HXX)
- Tri-State Logic
- Storage Delay Time
- Schottky TTL (74SXX)
- Low Power Schottky Clamped TTL (74LSXX)
- Advanced Schottky (74ASXX)
- Advanced Low Power Schottky (74ALSXX)
- Emitter Coupled Logic (ECL)
- I²L, MTL
- STL
- Integrated Schottky Logic (ISL)
- Compatibility of Logic Families
- Noise Margins of Logic Families
- Summary
DTL

- Disadvantages:
 - Two Supplies are needed
 - One more pin is needed

- Advantages:
 - D3, D4 are always on
 - Switching and NM are good
Diode Transistor Logic (DTL)

NM

NML = $V_{il} - V_{ol}$

$V_{il} = 0.7 + 0.7 + 0.5 - 0.7 = 1.2V$

$V_{ol} = 0.2 \Rightarrow NML = 1.2 - 0.2 = 1V$

NMH = $V_{oh} - V_{ih}$

$V_{oh} = V_{ol} = 4V$

$V_{ih} = ?$

$V_c = 2 \times 0.7 + 0.8 = 2.2$

$V_{A,B} \geq V_c - 0.7 = 1.5 = V_{th} \Rightarrow NMH = 4 - 1.5 = 2.5V \Rightarrow NM = 1$

What is the min. of β?

$V_{A,B} > 1.5 \Rightarrow I_{R1} = \frac{4 - 2.2}{2} = 0.9mA$

$I_{R2} = \frac{0.8 - (-2)}{5} = 0.56mA \Rightarrow I_B = 0.9 - 0.56 = 0.34mA$

$I_{sat} = \frac{4 - 0.1}{4} = 0.975mA \Rightarrow \beta_{min} = \frac{I_{sat}}{I_{Bsat}} = \frac{0.975}{0.34} = 2.9$
Fan-Out

\[I_{IH} \approx 0 \Rightarrow FO_H = \infty \]

FO\(_L\):

\[(V_A, V_B = 0.1) \Rightarrow I_{R1} = \frac{4 - 0.8}{2^k} = 1.6\text{mA}, \quad I_{R2} = \frac{2 - 0.6}{5^k} = 0.28\text{mA} \]

\[\Rightarrow I_{IL} = 1.6\text{mA} - 0.28\text{mA} = 1.32\text{mA} \text{(out of Gate)} \]

\[I_{csat} = \bar{\beta}I_{Bsat} = 30 \times 0.34^{mA} = 10.2\text{mA} \]

\[FO_L = \frac{10.2^{mA} - 0.975^{mA}}{1.32} = 7.44 \Rightarrow FO_L = 7 \]

\[\Rightarrow FO = 7 \]
DTL

- **Pdis**
 - We have 3-state for output high (input low) and 1-state for low
 - \[P_{\text{dis}} = \frac{3}{4} P_{\text{disL}} + \frac{1}{4} P_{\text{disH}} \]

\[
P_{\text{disL}} = V_{cc}I_{R1} + V_{BB}I_{R2} - V_{IL}I_{IL}
= 4 \times 1.6^{mA} + 2 \times 0.28^{mA} - 0.1 \times 1.32^{mA}
= 6.828 \text{mW}
\]

\[
P_{\text{disH}} = V_{cc}(I_{R1} + I_{Re}) + V_{BB}I_{R2}
= 4(0.975^{mA} + 0.95^{mA}) + 2 \times 0.5
= 8.8 \text{mW}
\]

\[\Rightarrow P_{\text{dis}} = \frac{1}{4} [3 \times 6.828 + 1 \times 8.8] = 7.321 \text{mW} \rightarrow \text{Better than RTL} \]

- **VBB** is needed for better switching of transistor
Logic Families on a Glance
- Diode Logic (DL)
- Resistor Transistor Logic (RTL)
- Diode Transistor Logic (DTL)
- Modified DTL (NAND)
- Transistor Transistor Logic (TTL)
- Standard TTL
- High Speed TTL (74HXX)
- Tri-State Logic
- Storage Delay Time
- Schottky TTL (74SXX)
- Low Power Schottky Clamped TTL (74LSXX)

Advanced Schottky (74ASXX)
- Advanced Low Power Schottky (74ALSXX)
- Emitter Coupled Logic (ECL)
- I²L, MTL
- STL
- Integrated Schottky Logic (ISL)
- Compatibility of Logic Families
- Noise Margins of Logic Families
- Summary
Modified DTL (MDTL)

\[V_{BB}, D3 \rightarrow Q1 \]

Q1, D4 = on \(\Rightarrow \) Q2 Charges very rapidly

In input we need the Base current \(\Rightarrow \) Fan-Out is increased

\[V_{cc} \rightarrow +5V \]

\[I_{csat} = \frac{5 - 0.1}{6^K} = 0.8mA \]

Q1 is never saturated

\[V1 = 0.7 + 0.7 + 0.8 = 2.2V \Rightarrow \overline{V_{IH}} = 2.2 - 0.7 = 1.5V \]

\[\overline{V_{IL}} = 0.5|Q1 + 0.7|D + 0.5|Q2 - 0.7 = 1V \]

\[\overline{V_{OL}} = 0.2 \]
MDTL

\[NML = 1 - 0.2 = 0.8 \]
\[V_{OH} = 5 \]
\[NMH = 5 - 1.5 = 3.5 \Rightarrow NM = 0.8 \]
\[Vin = +0.1 \Rightarrow I_{IL} = \frac{5 - 0.8}{2^5 + 1.75^5} = 1.12mA \]
\[I_{BQ1} = \text{Two inputs High} = \frac{5 - 2.2}{R1 + (1 + \beta_1)R3} = \begin{cases} 25.75\mu A, & I_{B2} = (\beta_1 + 1)I_{BQ1} - \frac{0.8}{R2} \\ \beta_1 = 60 \Rightarrow I_{R3} = 1.57mA \end{cases} \]
\[P_{disL} = VccI_{IL} - V_{IL}I_{IL} \]
= \[5 \times 1.12 - 0.1 \times 1.12 = 5.488mW \]
\[P_{disH} = Vcc(I_{R3} + I_{Re}) \]
= \[5(1.57 + 0.8) = 11.85mW \]
\[P_{dis} = \frac{1}{4} (3 \times 5.488 + 1 \times 11.85) \approx 7mW \]
Logic Families on a Glance
- Diode Logic (DL)
- Resistor Transistor Logic (RTL)
- Diode Transistor Logic (DTL)
- Modified DTL (NAND)
- Transistor Transistor Logic (TTL)
- Standard TTL
- High Speed TTL (74HXX)
- Tri-State Logic
- Storage Delay Time
- Schottky TTL (74SXX)
- Low Power Schottky Clamped TTL (74LSXX)
- Advanced Schottky (74ASXX)
- Advanced Low Power Schottky (74ALSXX)
- Emitter Coupled Logic (ECL)
- I²L, MTL
- STL
- Integrated Schottky Logic (ISL)
- Compatibility of Logic Families
- Noise Margins of Logic Families
- Summary
Transistor Transistor Logic (TTL)
TTL

- Multi Emitter Cross Section
TTL

- If input is low

\[V_{1} = 0.1(\text{Low}) + 0.1(V_{CE\text{sat}}) = 0.2V \]

- In this configuration the pull down is very good but pull up is not, because the output configuration is CE
- In CC the situation is Reverse!
- By combining this two configurations we have a better output stage!
TTL

- Totem Pole Output

![Diagram of TTL Totem Pole Output Circuit]

Vi = High → T1 = sat, T3 = sat ⇒ D is used for T2 = off
Logic Families on a Glance
- Diode Logic (DL)
- Resistor Transistor Logic (RTL)
- Diode Transistor Logic (DTL)
- Modified DTL (NAND)
- Transistor Transistor Logic (TTL)
- Standard TTL
- High Speed TTL (74HXX)
- Tri-State Logic
- Storage Delay Time
- Schottky TTL (74SXX)
- Low Power Schottky Clamped TTL (74LSXX)

Advanced logic families
- Advanced Schottky (74ASXX)
- Advanced Low Power Schottky (74ALSXX)
- Emitter Coupled Logic (ECL)
- I²L, MTL
- STL
- Integrated Schottky Logic (ISL)
- Compatibility of Logic Families
- Noise Margins of Logic Families
- Summary
Standard TTL
Standard TTL

VTC

Vi = 0.1V \Rightarrow Vc1 = 0.2 \Rightarrow T2, T4 = \text{off}
\Rightarrow Vc2 \approx 5V \Rightarrow V_{OH} = 5 - 2 \times 0.7 = 3.6V

Vi = 0.6V \Rightarrow Vc1 = 0.7V \Rightarrow T2 = \text{on} \Rightarrow Vo \downarrow

Vi = 1.3V \Rightarrow Vc1 = 1.4V \Rightarrow T2, T4 = \text{on}

\Rightarrow I_{E2} = (I_{B4} \approx 0) + \frac{0.7V}{1K} \approx 0.7mA

\Rightarrow V_{R2} = 0.7mA \times 1.6K = 1.12V

\Rightarrow Vc2 = 5 - 1.12 \approx 3.9V

\Rightarrow Vo = 3.9 - 1.4 = 2.5V

Vi = 1.5V \Rightarrow Vc1 = 1.6V \Rightarrow T2, T4 = \text{sat}
\Rightarrow Vo = 0.1V
Standard TTL

- Fan (In, Out)

Vi > 1.5V ⇒ V_{BCT1} = 0.7 \ (V_{BET1} < 0.6) ⇒ T1 = Reverse Mode

I_E = \beta_R I_B, \quad I_C = (\beta_R + 1)I_B, \quad I_B = \frac{5 - 2.3}{4^k} = 0.675\text{mA}, \quad \beta_R = 0.2

\sum NI_{E1} = \beta_R I_B

⇒ I_{E1} = \frac{0.2 \times 0.675\text{mA}}{2} = 0.0675\text{mA} = 67.5\mu\text{A}

In DTL it was equal to Io ≈ 0
Fan (In, Out)

\[I_{IL} = I_E = I_B + I_C \approx I_B = \frac{5 - 0.9}{4^K} \approx 1mA \]

\[I_{csat2} = \frac{5 - 0.9}{1.6^K} = \frac{41}{16}, \quad I_{Bsat4} = \frac{41}{16} - \frac{0.8}{1^K} = 1.76mA \]

\[I_{csat4} = \beta_{min} I_{Bsat4} = (\beta = 10) \times 1.76 = 17.6mA \]

\[\Rightarrow FO_L = \frac{17.6^{mA}}{1^{mA}} = 17, \quad FO_H = \frac{I_{R4}}{67.5\mu A} > FO_L \Rightarrow FO = FO_L = 17 \]

Real FO = 10 (\(\beta_{min} = 6 \))
Standard TTL

- NM
 - Accept the following values because VTC has not high slope

\[V_{OH} = 2.5\text{V}, \quad V_{IH} = 1.5\text{V}, \quad V_{IL} = 1.3\text{V}, \quad V_{OL} = 0.2\text{V} \]

\[\Rightarrow NMH = V_{OH} - V_{IH} = 2.5 - 1.5 = +1\text{V} \]

\[NML = V_{IL} - V_{OL} = 1.3 - 0.2 = 1.1\text{V} \]

\[\Rightarrow NM = 1\text{V} \]
Standard TTL

- **Pdis**

\[
P_{\text{disL}} = (T2 = \text{off}) = 5^V \times 1^{mA} - 0.1^V \times 1^{mA} = 4.9\text{mW}
\]

\[
P_{\text{disH}} = V_{iI} I_i + (I_{R1} + I_{R2}) V_{cc} + V_{OL} I_{iL} =
\]

\[
3.6^V \times 67.5^{\mu A} + (0.675^{mA} + 2.56^{mA}) \times 5^V + 0.1^V \times 1^{mA}
\]

\[
= 16.53\text{mW}
\]

\[
\Rightarrow P_{\text{dis}} = \frac{1}{4} (3 \times 4.9^{\text{mW}} + 1 \times 16.53^{\text{mW}})
\]

\[
\approx 8\text{mW}
\]
Standard TTL

- Layout
Contents

- Logic Family on a Glance
- Diode Logic (DL)
- Resistor Transistor Logic (RTL)
- Diode Transistor Logic (DTL)
- Modified DTL (NAND)
- Transistor Transistor Logic (TTL)
- Standard TTL
- High Threshold Logic (HTL)
- High Speed TTL (74HXX)
- Schottky TTL (74SXX)
- Low Power Schottky Clamped TTL (74LSXX)
- Advanced Schottky (74ASXX)
- Advanced Low Power Schottky (74ALSXX)
- Emitter Coupled Logic (ECL)
- I^2L , MTL
- STL
- Integrated Schottky Logic (ISL)
- Summary
High Threshold Logic (HTL)
Logic Families on a Glance
- Diode Logic (DL)
- Resistor Transistor Logic (RTL)
- Diode Transistor Logic (DTL)
- Modified DTL (NAND)
- Transistor Transistor Logic (TTL)
- Standard TTL
- High Threshold Logic (HTL)
- High Speed TTL (74HXX)
- Tri-State Logic
- Storage Delay Time
- Schottky TTL (74SXX)
- Low Power Schottky Clamped TTL (74LSXX)

Advanced Schottky (74ASXX)
- Advanced Low Power Schottky (74ALSXX)
- Emitter Coupled Logic (ECL)
- I^2L, MTL
- STL
- Integrated Schottky Logic (ISL)
- Compatibility of Logic Families
- Noise Margins of Logic Families
- Summary
High Speed TTL (74HXX)

- In previous T1, T2, (T3) and T4 can be saturated but in this circuit T5 prevent T3 from going to saturation.
- After T2=off, T6 discharges the base of T4 then the switching speed of T4 is very high.
- In previous we could not decrease the R3, because the current for conducting T4 must be increased!!
- D is used for compensating the ringing.
HSTTL

- **VTC**
 - TTL has a curvature in VTC for R3 because at first T2=on and then T4=on, but in this circuit T2, T4 must be conducted together.

![HSTTL Circuit Diagram]

![VTC Graph]
Tri-State Logic

- Totem-pole outputs should not be tied together
- Therefore, tri-state bus driver or open collector output can be used to prevent this problem
- Usually used to bus multiple signals on the same wire
- Advantage:
 The output of tri-state ICs can be connected together without sacrificing switching speed
Tri-State Logic

- Tri-state logic has three possible output states:
 - high
 - low
 - high impedance (Hi-Z)

- Tri-state logic is used as bus-driver where more than one output can be connected together

- There is an input controlling the output state, enable or disable
 - **Enable state**: The output operates as a conventional gate, the output level is either high or low
 - **Disable state**: The output is an open circuit, it is the Hi-Z state
Tri-State Logic

- Tri-state bus driver can be non-inverting or inverting.
- When more than one outputs are connected to a bus, only one of them can be at enable state, the others must be disabled. Otherwise, excessive current will flow through the output stage (in case of TTL) or output will be at abnormal level (in case of CMOS).
Tri-State Logic

Example 1
Tri-State Logic

Example 2

\[D = 0 \text{ (off)} \]
\[D = 1 \text{ (on)} \]
Contents

- Logic Families on a Glance
 - Diode Logic (DL)
 - Resistor Transistor Logic (RTL)
 - Diode Transistor Logic (DTL)
 - Modified DTL (NAND)
 - Transistor Transistor Logic (TTL)
 - Standard TTL
 - High Speed TTL (74HXX)
 - Tri-State Logic
 - Storage Delay Time
 - Schottky TTL (74SXX)
 - Low Power Schottky Clamped TTL (74LSXX)

- Advanced Schottky (74ASXX)
- Advanced Low Power Schottky (74ALSXX)
- Emitter Coupled Logic (ECL)
- I²L, MTL
- STL
- Integrated Schottky Logic (ISL)
- Compatibility of Logic Families
- Noise Margins of Logic Families
- Summary
Storage Delay Time

- This delay has a max respect to other therefore must be reduced
- One method for reduction is as follow

![Diagram](image-url)
Storage Delay Time

- **Schottky Diode**
 - In previous method we need a large area
 - Another method is using schottky transistor
Contents

- Logic Families on a Glance
- Diode Logic (DL)
- Resistor Transistor Logic (RTL)
- Diode Transistor Logic (DTL)
- Modified DTL (NAND)
- Transistor Transistor Logic (TTL)
- Standard TTL
- High Speed TTL (74HXX)
- Tri-State Logic
- Storage Delay Time
- Schottky TTL (74SXX)
- Low Power Schottky Clamped TTL (74LSXX)

- Advanced Schottky (74ASXX)
- Advanced Low Power Schottky (74ALSXX)
- Emitter Coupled Logic (ECL)
- I²L , MTL
- STL
- Integrated Schottky Logic (ISL)
- Compatibility of Logic Families
- Noise Margins of Logic Families
- Summary
Schottky TTL (74SXX)

- High speed variant of TTL
- Schottky transistors which have faster switching speed
- Schottky-barrier diode connected from base to collector to prevent transistor from going into saturation
Schottky TTL

- All of transistor (except T3) are replaced by schottky transistor
Schottky TTL

- NM

\[V_{\text{Donsh}} = V_{\text{BConsh}} = 0.5V \]
\[V_{\text{BESat4}} = 0.8V, \quad V_{\text{BCon4}} = 0.5V \Rightarrow V_{\text{CESat4}} = 0.3V \]
\[\Rightarrow V_{\text{OL}} = 0.3V = \overline{V_{\text{OL}}}, \quad V_{\text{IL}} = 0.7 \]

NM = 0.4V

\[V_{\text{OH}} = 3.6V \]
\[V_{\overline{\text{OH}}} = 5 - 1.6 = 3.4V \]
\[V_{\text{III}} = 1.3V \]
Schottky TTL

- VTC

- Graph showing Vo vs Vi with breakpoints at 0.3, 3.6, 1.1, and 1.3 V_{IH}

- Circuit diagram with transistors T1, T2, T3, T4, T5, and T6, resistors 2.8K, 900Ω, 3.5K, 500, and 250, and a power supply of +5 V.
Low Power Schottky Clamped TTL (74LSXX)

- The input do change as figure
 - Resistors are large
 - Component function
 - D1, D2: AND function
 - D5, D6: High-speed clamping of input signal excursions below ground
 - D3, D4: Stored charge removal of the base of T2 and T3 on Positive transition of the input
 - 20KΩ resistor connected to D1 and D2: Small amount of current source
\[I_{IL} = \frac{5 - (0.3 + 0.5)}{20^K} = 0.21 \text{mA} \]
\[V_{OL} = 0.3 \text{V} \]
\[V_{OH} = 5 - 1.4 = 3.6 \]
\[V_{IL} = (0.5|_{T1} + 0.5|_{T5}) - 0.5|_{D2} = 0.5 \text{V} \]
\[V_{OL} = \overline{V_{OL}} = 0.3 \text{V} \]
\[\text{NML} = 0.5 - 0.3 = 0.2 \text{V} \]
VTC

\[V_T C = (0.7|T_1 + 0.7|T_4) - 0.5|D_2 \]
Logic Families on a Glance
- Diode Logic (DL)
- Resistor Transistor Logic (RTL)
- Diode Transistor Logic (DTL)
- Modified DTL (NAND)
- Transistor Transistor Logic (TTL)
- Standard TTL
- High Speed TTL (74HXX)
- Tri-State Logic
- Storage Delay Time
- Schottky TTL (74SXX)
- Low Power Schottky Clamped TTL (74LSXX)

Advanced Schottky (74ASXX)
- Advanced Low Power Schottky (74ALSXX)
- Emitter Coupled Logic (ECL)
- I²L, MTL
- STL
- Integrated Schottky Logic (ISL)
- Compatibility of Logic Families
- Noise Margins of Logic Families
- Summary
Advanced Schottky (74ASXX)

- In the early to middle 1980s
 - Discontinuing
- Letter designator
 - F: fast advanced Schottky TTL
 - ALS: advanced low-power Schottky TTL
 - AS: advanced Schottky TTL
- Selection criteria of FAST vs. AS
 - Price, availability
Advanced Schottky (74ASXX)
Advanced Schottky (74ASXX)

Input circuit

Component function

• D1, D2: AND function
• D4, D5: High-speed clamping of input signal excursions below ground
• D3: Stored charge removal of the base of T3 in output on Positive transition of the input
• 2.7KΩ resistor connected to D1 and D2: Small amount of current source
Advanced Schottky (74ASXX)

- Output circuit
 - T2, T3: Darlington pair
 - D6: negative voltage excursions reductions due to reflection caused by transmission-line effects
Advanced Schottky (74ASXX)

- Combination Circuit (AND + OR + Inverter)

\[Y = \overline{AB + CD} \]
Logic Families on a Glance
- Diode Logic (DL)
- Resistor Transistor Logic (RTL)
- Diode Transistor Logic (DTL)
- Modified DTL (NAND)
- Transistor Transistor Logic (TTL)
- Standard TTL
- High Speed TTL (74HXX)
- Tri-State Logic
- Storage Delay Time
- Schottky TTL (74SXX)
- Low Power Schottky Clamped TTL (74LSXX)

Advanced Schottky (74ASXX)
- Advanced Low Power Schottky (74ALSXX)
- Emitter Coupled Logic (ECL)
- I^2L , MTL
- STL
- Integrated Schottky Logic (ISL)
- Compatibility of Logic Families
- Noise Margins of Logic Families
- Summary
Advanced Low Power Schottky (74ALSXX)

- Input transistors do not have to be schottky, because they do not saturate.
- If we use schottky for them, the area will be large!

Res ↑, I ↓⇒ ALS
Contents

- Logic Families on a Glance
 - Diode Logic (DL)
 - Resistor Transistor Logic (RTL)
 - Diode Transistor Logic (DTL)
 - Modified DTL (NAND)
 - Transistor Transistor Logic (TTL)
 - Standard TTL
 - High Speed TTL (74HXX)
 - Tri-State Logic
 - Storage Delay Time
 - Schottky TTL (74SXX)
 - Low Power Schottky Clamped TTL (74LSXX)

- Advanced Schottky (74ASXX)
- Advanced Low Power Schottky (74ALSXX)
- Emitter Coupled Logic (ECL)
- I²L, MTL
- STL
- Integrated Schottky Logic (ISL)
- Compatibility of Logic Families
- Noise Margins of Logic Families
- Summary
Emitter Coupled Logic (ECL)

- Current steering rather than saturating transistors to represent logic 0/1
- Extremely high-speed
ECL

- We do not saturate any transistor!
ECL

VTC

- $I_{C1} = I_s \left[\exp \left(\frac{V_i - V_t}{V_t} \right) - 1 \right]$
- $I_{C0} = I_s \left[\exp \left(\frac{V_{ref} - V_t}{V_t} \right) - 1 \right]$
- $\frac{I_{C1}}{I_{C0}} \approx \exp \left(\frac{V_i - V_{ref}}{V_t} \right) \Rightarrow$
- $V_i - V_{ref} = V_t \ln \left(\frac{I_{C1}}{I_{C0}} \right)$
- $I_{C1} + I_{C0} = \alpha I_o \Rightarrow$
- $I_{C0} = \frac{1}{\alpha I_o} \left[1 + \exp \left(\frac{V_i - V_{ref}}{V_t} \right) \right]$
ECL

\[I_{C1} = 100I_{C0} \rightarrow V_i - V_{ref} \approx 100\text{mV} \]
\[\Rightarrow T_0 \approx \text{off, } T_1 \approx \text{on} \]

From one output → NOR Gate
From other output → OR Gate

For Similarity → \(V_{ref} = \frac{1}{2}(V_{OH} + V_{OL}) \)

In ECL we need \(V_{EE} \uparrow \) and \(V_{CC} \rightarrow 0 \) for noise reduction
ECL

- OR + NOR
Noise Immunity

\[
T_1, T_2 \approx \text{off} \Rightarrow \\
I_{B3} = \frac{V_{cc} - (V_{o1} + V_{BE})}{R_1} = \frac{V_{o1} - V_{EE}}{R_5(\beta + 1)} \\
\Rightarrow V_{o1} = \frac{V_{cc} - V_{BE}}{R_1} + \frac{V_{EE}}{(\beta + 1)R_5} \\
\Rightarrow \delta V_{o1} = \frac{(\beta + 1)R_5}{R_1 + (\beta + 1)R_5} \approx 1 \\
\]

\[
\begin{align*}
\delta V_{cc} & = \frac{R_1}{R_1 + (\beta + 1)R_5} \\
\delta V_{EE} & = \frac{R_1}{R_1 + (\beta + 1)R_5} \approx \frac{R_1}{(\beta + 1)R_5} \\
\end{align*}
\]

\[
\Rightarrow V_{EE} \text{ is noise immune}
\]
ECL

Vref Circuit

\[
VB = -\frac{VEE - 2V_D}{2.3^K + 0.3^K} \times 0.3^K = -0.428V
\]

\(\Rightarrow \) \(V_{\text{ref}} = +VB - 0.75 = -1.14V \)

1) \(A, B \rightarrow \text{Low}, \quad V_{\text{cc}} = 0 \)

\(\Rightarrow V_{\text{ol}} = -0.75V \)

\(V_I = V_{\text{ref}} - 0.75 = -1.9V \)

\(I_{R3} = \frac{5.2 - 1.9}{1.25^K} = 2.64mA \)

\(V_{R2} = -2.64mA \times 0.3^K = -0.792V \)

\(V_{o2} = V_{R2} - 0.75 = -1.542V \)
ECL

- **Vref Circuit**

\[
V_B = -\frac{V_{EE} - 2V_D}{2.3K + 0.3K} \times 0.3^K = -0.428V
\]

\[
\Rightarrow V_{ref} = +V_B - 0.75 = -1.14V
\]

\[
2) A, B \rightarrow \text{High}(-0.75V), \quad V_{cc} = 0
\]

\[
\Rightarrow V_{o2} = -0.75V
\]

\[
V_{1} = -0.75^V - 0.75^V = -1.5V
\]

\[
I_{R3} = \frac{5.2 - 1.5}{1.25^K} = 2.96mA
\]

\[
V_{R1} = 2.96^{mA} \times 0.27^K \approx 0.8V
\]

\[
V_{ol} = V_{R1} - 0.75 = -1.55V
\]
ECL

- Symbol and VTC

![ECL Circuit Diagram](image)

The diagram shows the symbolic representation of OR and NOR gates. The VTC (Voltage Transfer Characteristics) graph illustrates the input-output relationship for both OR and NOR functions. The voltage levels for different states are highlighted, indicating the voltage thresholds for logic transitions.

- OR
 - Input: A, B
 - Output: Vo
 - Voltage Levels: -0.75V, -1.55V

- NOR
 - Input: A, B
 - Output: Vo
 - Voltage Levels: -1.55V, -0.75V

The graph shows Vo ≈ -1.71V, indicating the voltage level at which the NOR gate transitions from one logic state to another.
ECL

- **VTC**
- **T1 may be saturate if R3 is used**
 \[
 I_{clsat} = \frac{V_{EE} - 0.1}{1.25^K + 0.27^K} = 3.36\text{mA}
 \]
 \[
 \Rightarrow V_{ol} = -0.8 - 3.36^{\text{mA}} \times 0.27^K
 \]
 \[
 V_{ol} = -1.71\text{V} \quad (V_i = -0.25\text{V})
 \]
- **If Vi is increased more (Vi>-0.25)**
 \[
 V_{ol} = V_i + V_{BCT1} + V_{BET3}
 \]
 \[
 \Rightarrow V_{ol} = V_i - 0.7 - 0.75 \quad (\text{for NOR Gate})
 \]
ECL

- Speed of OR, NOR ECL Gate
 - To is in CB configuration therefore OR is faster than NOR
ECL

- **Pdis**

1) **Input Low**

\[I_{R3} = 2.64\text{mA} \]

\[I_{R5} = \frac{5.2 - 0.75}{R5} = 2.225\text{mA} \]

\[I_{R4} = \frac{5.2 - 1.55}{R4} = 1.825\text{mA} \]

\[P_{dis} = 5.2^V (2.64^{\text{mA}} + 2.225^{\text{mA}} + 1.825^{\text{mA}}) = 34.8\text{mW} \]
ECL

- **P\text{dis}**

2) Input High

\[I_{R3} = 2.96\text{mA} \]

\[I_{R5} = 1.825\text{mA} \]

\[I_{R4} = 2.225\text{mA} \]

\[P_{\text{dis}} = 5.2V \left(2.96\text{mA} + 1.825\text{mA} + 2.225\text{mA} \right) = 36.4\text{mW} \]

\[P_{\text{dis}} = \frac{1}{2} \left(36.4 + 34.8 \right) = 35.6\text{mW} \]
ECL

- P_{\text{dis (Vref)}}

\[I_{2K} = \frac{5.2 - 1.15}{2^K} = 2.025 \text{mA} \]
\[I_{2.3K} = \frac{5.2 - 1.4}{2.3^K + 0.3^K} = 1.46 \text{mA} \]
\[P_{\text{dis ref}} = 5.2^V (2.025 \text{mA} + 1.46 \text{mA}) = 18.122 \text{mW} \]
\[P_{\text{distot}} = 35.6 \text{mW} + 18.122 \text{mW} \approx 53.7 \text{mW} \]
ECL

10K Typical Characteristics

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{OH} / V_{OL}</td>
<td>$-0.9/-1.7$</td>
<td></td>
</tr>
<tr>
<td>V_{IH} / V_{IL}</td>
<td>$-1.2/-1.4$</td>
<td></td>
</tr>
<tr>
<td>NM_H / NM_L</td>
<td>$0.3/0.3$</td>
<td></td>
</tr>
<tr>
<td>Logic Swing</td>
<td>$0.8V$</td>
<td></td>
</tr>
<tr>
<td>FO</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Supply</td>
<td>$-5.2V$</td>
<td></td>
</tr>
<tr>
<td>PD</td>
<td>$24mW$</td>
<td></td>
</tr>
<tr>
<td>PDT</td>
<td>$2n$ sec</td>
<td></td>
</tr>
</tbody>
</table>
Better ECL (Positive Supply)

\[V_{OH} = 1.7V \]
\[V_{OL} = V_{cc} - 0.5 \] (Platin Schottky Diode) \[= 1.2V \]
\[V_{ref} = \frac{1}{2} (1.7^V + 1.2^V) = 1.45V \]
ECL

- **100K Series**
 - In ECL10K series the reference voltage is centered with respect to V_{OH} and V_{OL} even with changes of temperature
 - However, the Vref and output voltage levels do change with temperature, increasing as temperature increases
 - In ECL100K series this problem is solved
100K Series

- D1, D2 and R4 eliminate the curvature in VTC

![ECL Circuit Diagram]

![Characteristics Plot]

- D1, D2, R4 eliminate this
ECL

- Combination in ECL
 - To1, To2 have the same B, C therefore the area is small

+Vcc = 1.7

(A + B)(C + D)
Contents

- Logic Families on a Glance
 - Diode Logic (DL)
 - Resistor Transistor Logic (RTL)
 - Diode Transistor Logic (DTL)
 - Modified DTL (NAND)
 - Transistor Transistor Logic (TTL)
 - Standard TTL
 - High Speed TTL (74HXX)
 - Tri-State Logic
 - Storage Delay Time
 - Schottky TTL (74SXX)
 - Low Power Schottky Clamped TTL (74LSXX)

- Advanced Schottky (74ASXX)
- Advanced Low Power Schottky (74ALSXX)
- Emitter Coupled Logic (ECL)
- \(I^2L \), MTL
- STL
- Integrated Schottky Logic (ISL)
- Compatibility of Logic Families
- Noise Margins of Logic Families
- Summary
Merged Transistor Logic

- Minimal TTL Implementation to Reduce Number of Passive, Power Dissipating Components
- Integrated Injection Logic: I^2L
 - Multiple collector NPN bipolar transistors
 - Can be “wire-or’d” to create all logic functions
I^2L , MTL

- **I^2L** = Integrate Injection Logic (Phillips)
- **MTL** = Merged Transistor Logic
Vertical NPN is not suitable because:
- Collector N^+
- Base Large
- Emitter N-epi
I²L, MTL

- **NM**

 0.9V \leq V_{cc} \leq 15V

 \[
 \begin{align*}
 V_{OH} &= V_{OH} = 0.8V \\
 V_{OL} &= 0.1V \\
 V_{IL} &= 0.2V \\
 \beta_{\text{min}} &= \text{is equal to no output collectors} \\
 &= \text{(for 5 outputs } \beta_{\text{min}} = 5) \\
 V_{IH} &= 0.7V \\
 V_{IL} &= 0.5V
 \end{align*}
 \]

 \[
 \begin{align*}
 NML &= V_{IL} - V_{OL} = 0.5^V - 0.2^V = 0.3V \\
 NMH &= V_{OH} - V_{IH} = 0.8^V - 0.7^V = 0.1V
 \end{align*}
 \]
I^2L, MTL

- Advantages:
 - Digital + Analog
 - PDP is close to CMOS
 - Small area
I^2L NOR

\[I^2L, \text{MTL} \]

$A + B$
I^2L, MTL

- I^2L NAND
I^2L, MTL

- **I^2L FF**
 - The largest time constant is belong to Emitter (Emitter area is very large and delay is equal to time which need charge Emitter-Base cap. with I)
Better I^2L

- N_1^+ is used in 3 sides (except left)
- $N_1^+ \rightarrow$ Increase Injection in Vertical $\rightarrow \beta \uparrow$
- We can not use schottky because we need N in collector
- I^2L is slower than ECL by approximately 5
Delay Power

\[P = IV \approx IV_{BE} , \quad V_{CESatPNP} \approx 0 \rightarrow V_{cc} \approx V_{BE} \]

\[Q = CV_{BE} = It \Rightarrow t = \frac{C}{I} V_{BE} \rightarrow P_{t_d} = CV_{BE}^2 = Cte \]

From this point the Excess current is large then in delay calculation, the storage time must be calculated.
Faster I^2L
- If we change ΔV_{BE} to a lower value the Gate become faster
- By a Schottky on collector of T1, $\Delta V_{BE}=0.7-0.5=0.2V$
- This reduces NM
\(I^2L, MTL \)

- Faster \(I^2L \)
Faster I^2L (Other Idea)

- Schottky is used for T2
- We have Large V_{CESat} and then it is very difficult to design a Gate, because $V_D + V_{\text{CESat}}$ not to be reached to $V_{\text{BE}}(0.7)$
- The Metal for schottky will be very important for reduction of barrier potential, usually the mixture of Si and Pt is used
Contents

- Logic Families on a Glance
 - Diode Logic (DL)
 - Resistor Transistor Logic (RTL)
 - Diode Transistor Logic (DTL)
 - Modified DTL (NAND)
 - Transistor Transistor Logic (TTL)
 - Standard TTL
 - High Speed TTL (74HXX)
 - Tri-State Logic
 - Storage Delay Time
 - Schottky TTL (74SXX)
 - Low Power Schottky Clamped TTL (74LSXX)

- Advanced Schottky (74ASXX)
- Advanced Low Power Schottky (74ALSXX)
- Emitter Coupled Logic (ECL)
- I2L , MTL
- Schottky Transistor Logic (STL)
- Integrated Schottky Logic (ISL)
- Compatibility of Logic Families
- Noise Margins of Logic Families
- Summary
Schottky Transistor Logic (STL)
Contents

- Logic Families on a Glance
 - Diode Logic (DL)
 - Resistor Transistor Logic (RTL)
 - Diode Transistor Logic (DTL)
 - Modified DTL (NAND)
 - Transistor Transistor Logic (TTL)
 - Standard TTL
 - High Speed TTL (74HXX)
 - Tri-State Logic
 - Storage Delay Time
 - Schottky TTL (74SXX)
 - Low Power Schottky Clamped TTL (74LSXX)
- Advanced Schottky (74ASXX)
- Advanced Low Power Schottky (74ALSXX)
- Emitter Coupled Logic (ECL)
- I^2L , MTL
- STL
- Integrated Schottky Logic (ISL)
- Compatibility of Logic Families
- Noise Margins of Logic Families
- Summary
Integrated Schottky Logic (ISL)

- We use resistor for PNP
- Only in this configuration the Emitter junction is on the top

![Circuit Diagram]

- \(V_{\text{CBT1 sat}} = 0.7 \text{V} \)
- \(V_{\text{EBT2}} = 0.6 \text{V} < V_{\text{CBT1}} \)

\[\Rightarrow \begin{cases}
\text{PNP} \rightarrow \text{Prevents NPN to saturate} \\
\text{NPN} \rightarrow \text{Prevents PNP to saturate}
\end{cases} \Rightarrow \text{Higher Speed} \]
N+1 is used for lowering the ohmic junction of collector.

It covers the large area of Base Then $\beta_{\text{PNP}} \downarrow$.
Contents

- Logic Families on a Glance
 - Diode Logic (DL)
 - Resistor Transistor Logic (RTL)
- Diode Transistor Logic (DTL)
- Modified DTL (NAND)
- Transistor Transistor Logic (TTL)
- Standard TTL
- High Speed TTL (74HXX)
- Tri-State Logic
- Storage Delay Time
- Schottky TTL (74SXX)
- Low Power Schottky Clamped TTL (74LSXX)
- Advanced Schottky (74ASXX)
- Advanced Low Power Schottky (74ALSXX)
- Emitter Coupled Logic (ECL)
- I²L , MTL
- STTL
- Integrated Schottky Logic (ISL)
- Compatibility of Logic Families
- Noise Margins of Logic Families
- Summary
Compatibility of Logic Families

- Common ground, common supply voltage, and TTL input and output levels
- Common ground, common supply voltage, CMOS inputs, and TTL outputs
- Common ground, common supply voltage, TTL inputs, and CMOS outputs
- Common ground, different Supply voltage levels
- Dynamic interface issues
Compatibility of Logic Families

- Common GND, Different Supply Voltage
 - Low-voltage device for interface to TTL level I/O 5V logic devices
 - Low voltage BiCMOS LVT, CMOS LVC, LVQ, FCT3, etc
 - Cautions
 - 3.3V to 5V logic interface
 - In general, no problem
 - 5V to 3.3V logic interface
 - Must have no an electrostatic protection network (a diode or diodes) at the inputs of 3.3V devices to prevent excessive current
Compatibility of Logic Families

- Dynamic Interface Issues
 - When logic families are mixed
 - Dynamic and static interface compatibility
 - Timing problem by mixing slow and fast devices
 - Holding time violation by fast-edge to slow-edge logic interface
 - In synchronous systems, signals originating from fast devices may go away before they can be captured by slow devices.
Contents

- Logic Families on a Glance
 - Diode Logic (DL)
 - Resistor Transistor Logic (RTL)
 - Diode Transistor Logic (DTL)
 - Modified DTL (NAND)
 - Transistor Transistor Logic (TTL)
 - Standard TTL
 - High Speed TTL (74HXX)
 - Tri-State Logic
 - Storage Delay Time
 - Schottky TTL (74SXX)
 - Low Power Schottky Clamped TTL (74LSXX)

- Advanced Schottky (74ASXX)
- Advanced Low Power Schottky (74ALSXX)
- Emitter Coupled Logic (ECL)
- I²L, MTL
- STL
- Integrated Schottky Logic (ISL)
- Compatibility of Logic Families
- Noise Margins of Logic Families
- Summary
Noise Margins of Logic Families

- What is the Noise margin?
 - Difference between the worst-case output levels and the worst-case input levels
- Static and Dynamic noise margins
 - Static noise margin: low-frequency safety margins
 - Dynamic noise margin: sensitivity of logic devices to noise spikes
 - It is less than that of older logic families because of designing for high-speed operation
Noise Margins of Logic Families

- **Static Noise margin**

<table>
<thead>
<tr>
<th>Family</th>
<th>Input levels, V</th>
<th>Output levels, V</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$V_{IL\ MAX}$</td>
<td>$V_{IH\ MIN}$</td>
</tr>
<tr>
<td>ABT</td>
<td>0.8</td>
<td>2.0</td>
</tr>
<tr>
<td>AC</td>
<td>1.35</td>
<td>3.15</td>
</tr>
<tr>
<td>ACT</td>
<td>0.8</td>
<td>2.0</td>
</tr>
<tr>
<td>AC11</td>
<td>1.35</td>
<td>3.15</td>
</tr>
<tr>
<td>ACT11</td>
<td>0.8</td>
<td>2.0</td>
</tr>
<tr>
<td>ALS</td>
<td>0.8</td>
<td>2.0</td>
</tr>
<tr>
<td>AS</td>
<td>0.8</td>
<td>2.0</td>
</tr>
<tr>
<td>FAST</td>
<td>0.8</td>
<td>2.0</td>
</tr>
<tr>
<td>FCT</td>
<td>0.8</td>
<td>2.0</td>
</tr>
<tr>
<td>FCT3</td>
<td>0.8</td>
<td>2.0</td>
</tr>
<tr>
<td>BC</td>
<td>0.8</td>
<td>2.0</td>
</tr>
<tr>
<td>BCT</td>
<td>0.8</td>
<td>2.0</td>
</tr>
<tr>
<td>LVQ</td>
<td>0.8</td>
<td>2.0</td>
</tr>
<tr>
<td>LVT</td>
<td>0.8</td>
<td>2.0</td>
</tr>
</tbody>
</table>
Noise Margins of Logic Families

- Dynamic Noise margin
 - Low state pulse rejection characteristic of IDT FCT244
Contents

- Logic Families on a Glance
- Diode Logic (DL)
- Resistor Transistor Logic (RTL)
- Diode Transistor Logic (DTL)
- Modified DTL (NAND)
- Transistor Transistor Logic (TTL)
- Standard TTL
- High Speed TTL (74HXX)
- Tri-State Logic
- Storage Delay Time
- Schottky TTL (74SXX)
- Low Power Schottky Clamped TTL (74LSXX)
- Advanced Schottky (74ASXX)
- Advanced Low Power Schottky (74ALSXX)
- Emitter Coupled Logic (ECL)
- I²L, MTL
- STL
- Integrated Schottky Logic (ISL)
- Compatibility of Logic Families
- Noise Margins of Logic Families
- Summary
In this lecture the development of Digital IC specially bipolar gate circuit is described. Specially described in detail are:

- RTL
- DTL
- TTL including:
 - Standard TTL
 - Schottky Clamped (S)
 - Low Power Schottky (LS)
 - Advanced Schottky (AS)
 - Advanced Low Power Schottky (ALS)
- ECL
- \(I^2L \)
- STL
- ISL